精英家教网 > 高中数学 > 题目详情
1.“a=${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx”是“函数y=cos2ax-sin2ax的最小正周期为4”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

分析 由a=${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx利用微积分的几何意义:a表示的是单位圆的面积的$\frac{1}{4}$,可得a.函数y=cos2ax-sin2ax=cos2ax,其周期T=$\frac{2π}{|2a|}$=$\frac{π}{|a|}$=4,解得a,即可判断出关系.

解答 解:利用微积分的几何意义知,a=${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx表示的是单位圆的面积的$\frac{1}{4}$,因此a=$\frac{π}{4}$.
函数y=cos2ax-sin2ax=cos2ax,其周期T=$\frac{2π}{|2a|}$=$\frac{π}{|a|}$=4,解得a=$±\frac{π}{4}$.
∴“a=${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx”是“函数y=cos2ax-sin2ax的最小正周期为4”的充分非必要条件.
故选:A.

点评 本题考查了微积分基本定理、三角函数的图象与性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)部分图象如图所示:
(1)写出函数f(x)的解析式;
(2)若存在x∈[0,$\frac{π}{2}$]使得f(x)+4cos2x+m=0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设f′(a)=4,则$\lim_{h→0}\frac{f(a+2h)-f(a-h)}{h}$=(  )
A.4B.8C.12D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将函数y=sinx-$\sqrt{3}$cosx的图象向右平移a(a>0)个单位长度,所得函数的图象关于y轴对称,则a的最小值是(  )
A.$\frac{π}{3}$B.$\frac{7π}{6}$C.$\frac{π}{6}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数的最小值是2的为(  )
A.y=x+$\frac{1}{x}$B.y=sinx+$\frac{1}{sinx}$,x∈(0,$\frac{π}{2}$)
C.y=$\frac{{{x^2}+2}}{{\sqrt{{x^2}+1}}}$D.y=x+$\frac{1}{x-1}$(x>1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列说法正确的是(  )
A.存在α∈(0,$\frac{π}{2}$),使sinα+cosα=$\frac{1}{3}$
B.y=tanx在其定义域内为增函数
C.y=cos2x+sin($\frac{π}{2}$-x)既有最大、最小值,又是偶函数
D.y=sin|2x+$\frac{π}{6}$|的最小正周期为π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知α,β均为锐角,且sinα=$\frac{{\sqrt{26}}}{26}$,tanβ=$\frac{2}{3}$.
(1)求α+β的值;
(2)求cos(α+2β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,已知AB=4,AC=2$\sqrt{3}$,∠B=60°,则BC的长为(  )
A.2B.$3\sqrt{2}$C.$2\sqrt{7}$D.$3\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知△ABC的内角A,B,C的对边分别为a,b,c,且有a2+b2-c2=4S△ABC
(1)求角C的大小;
(2)若c=$\sqrt{2}$,求a-$\frac{\sqrt{2}}{2}$b的取值范围.

查看答案和解析>>

同步练习册答案