精英家教网 > 高中数学 > 题目详情
9.将函数y=sinx-$\sqrt{3}$cosx的图象向右平移a(a>0)个单位长度,所得函数的图象关于y轴对称,则a的最小值是(  )
A.$\frac{π}{3}$B.$\frac{7π}{6}$C.$\frac{π}{6}$D.$\frac{π}{2}$

分析 根据函数y=Asin(ωx+φ)的图象变换规律,可得y=2sin(x-a-$\frac{π}{3}$) 的图象关于y轴对称,可得a+$\frac{π}{3}$=kπ+$\frac{π}{2}$,k∈Z,从而求得a的最小值.

解答 解:将函数y=sinx-$\sqrt{3}$cosx=2sin(x-$\frac{π}{3}$) 的图象向右平移a(a>0)个单位长度,
可得y=2sin(x-a-$\frac{π}{3}$) 的图象,
根据所得函数的图象关于y轴对称,可得a+$\frac{π}{3}$=kπ+$\frac{π}{2}$,k∈Z,即a=kπ+$\frac{π}{6}$,k∈Z.
则a的最小值为$\frac{π}{6}$,
故选:C.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.在△ABC中,角A,B,C所对的边分别是a,b,c,且△ABC三边a,b,c上的高分别为$\frac{1}{13}$,$\frac{1}{11}$,$\frac{1}{5}$,则△ABC为(  )
A.锐角三角形B.直角三角形
C.钝角三角形D.不存在这样的三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知某几何体的三视图如图所示,则它的表面积为(  )
A.15πB.16πC.17πD.18π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在△ABC中,∠B=90°,AB为直径的⊙O交AC于D,过点D作⊙O的切线交BC于E,AE交⊙O于点F.
(1)证明:EB=EC;
(2)证明:AD•AC=AE•AF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到如图的散点图及一些统计量的值.

$\overline x$$\overline y$$\overline w$$\sum_{i=1}^8{{{({x_i}-\overline x)}^2}}$$\sum_{i=1}^8{{{({w_i}-\overline w)}^2}}$$\sum_{i=1}^8{({x_i}-\overline x)•({{y_i}-\overline y})}$$\sum_{i=1}^8{{{({w_i}-\overline w)}^2}}•({{y_i}-\overline y})$
46.65636.8289.81.61 469108.8
表中wi=$\sqrt{x}$i,$\overline w$=$\frac{1}{8}$$\sum_{i=1}^{8}$wi
(1)根据散点图判断,y=a+bx与y=c+d$\sqrt{x}$哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;
(3)已知这种产品的年利润z与x,y的关系为z=0.2y-x.根据(2)的结果回答下列问题:
①年宣传费x=49时,年销售量及年利润的预报值是多少?
②年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为:$\widehatβ=\frac{{\sum_{i=1}^n{({u_i}-\overline u)({{v_i}-\overline v})}}}{{\sum_{i=1}^n{{{({u_i}-\overline u)}^2}}}},\widehatα=\overline v-\widehatβ\overline u$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,AD∥BC,过A、C、D三点的圆O与直线AB相切,且圆O过线段BC的中点E.
(1)求证:∠B=∠ACD;
(2)求$\frac{AC}{CD}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.“a=${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx”是“函数y=cos2ax-sin2ax的最小正周期为4”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)是周期为4的偶函数,当x∈[0,2]时f(x)=$\left\{\begin{array}{l}{{x}^{2},0≤x≤1}\\{lo{g}_{2}x+1,1<x≤2}\end{array}\right.$,则f(2014)+f(2015)=(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若a,b是任意实数,且a>b,则(  )
A.$\sqrt{a}$>$\sqrt{b}$B.$\frac{b}{a}$<1C.($\frac{1}{3}$)a<($\frac{1}{3}$)bD.lg(a-b)>0

查看答案和解析>>

同步练习册答案