精英家教网 > 高中数学 > 题目详情
14.如图,AD∥BC,过A、C、D三点的圆O与直线AB相切,且圆O过线段BC的中点E.
(1)求证:∠B=∠ACD;
(2)求$\frac{AC}{CD}$的值.

分析 (1)利用圆的切线的性质,及平行线的性质可得∠B=∠ACD;
(2)证明△ABE∽△ACD,即可求$\frac{AC}{CD}$的值.

解答 (1)证明:∵圆O与直线AB相切,
∴∠BAE=∠ACE
∵AD∥BC,∴∠DAC=∠ACE,
∴∠BAE=∠DAC
又∵A、E、C、D四点共圆,∴∠D=∠AEB.
∴∠ACD=180°-∠D-∠DAC=180°-∠AEB-∠BAE=∠B…(5分)
(2)解:由(1)∠BAE=∠DAC,∠D=∠AEB,
∴△ABE∽△ACD,
∴$\frac{BE}{CD}=\frac{AB}{AC}$,
∵BC=2BE,BE=CE,
∴由切割线定理AB2=BC•BE=2BE2
∴$\frac{AC}{CD}=\frac{AB}{BE}=\sqrt{2}$…..(10分)

点评 本题考查圆的切线的性质,考查三角形相似的判定与性质,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.某种饮料每箱装4听,如果其中有一听不合格,从一箱中随机抽取两听,则抽到不合格品的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,直线l的参数方程为$\left\{\begin{array}{l}{x=3-\frac{3}{5}t}\\{y=\frac{4}{5}t}\end{array}\right.$(t为参数),直线l与x,y轴的正半轴分别交于A,B两点.
(1)求△OAB内切圆C的普通方程,并化为参数方程及极坐标方程;
(2)设P是圆C上任一点,求|PO|2+|PA|2+|PB|2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.16B.20+6πC.14+2πD.20+2π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将函数y=sinx-$\sqrt{3}$cosx的图象向右平移a(a>0)个单位长度,所得函数的图象关于y轴对称,则a的最小值是(  )
A.$\frac{π}{3}$B.$\frac{7π}{6}$C.$\frac{π}{6}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{3}$=1(a>$\sqrt{3}$)的右焦点为F,右顶点为M,且$\frac{1}{{|{OF}|}}$+$\frac{1}{{|{OM}|}}$=$\frac{3e}{{|{FM}|}}$,(其中O为原点),e为椭圆的离心率.
(1)求椭圆C方程;
(2)若过点F的直线l与C相交于A,B两点,在x轴上是否存在点N,使得$\overrightarrow{NA}$•$\overrightarrow{NB}$为定值?如果有,求出点N的坐标及相应定值;如果没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列说法正确的是(  )
A.存在α∈(0,$\frac{π}{2}$),使sinα+cosα=$\frac{1}{3}$
B.y=tanx在其定义域内为增函数
C.y=cos2x+sin($\frac{π}{2}$-x)既有最大、最小值,又是偶函数
D.y=sin|2x+$\frac{π}{6}$|的最小正周期为π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若复平面内一个正方形的三个顶点对应的复数分别为z1=1+2i,z2=-2+i,z3=-1-2i,则正方形第四个顶点对应的复数为2-i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.关于空间直角坐标系O-xyz中的一点P(1,2,3),有下列说法:
①点P到坐标原点的距离为$\sqrt{13}$;
②OP的中点坐标为($\frac{1}{2},1,\frac{3}{2}$);
③点P关于x轴对称的点的坐标为(-1,-2,-3);
④点P关于坐标原点对称的点的坐标为(1,2,-3);
⑤点P关于坐标平面xOy对称的点的坐标为(1,2,-3).
其中正确的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案