分析 (1)利用圆的切线的性质,及平行线的性质可得∠B=∠ACD;
(2)证明△ABE∽△ACD,即可求$\frac{AC}{CD}$的值.
解答
(1)证明:∵圆O与直线AB相切,
∴∠BAE=∠ACE
∵AD∥BC,∴∠DAC=∠ACE,
∴∠BAE=∠DAC
又∵A、E、C、D四点共圆,∴∠D=∠AEB.
∴∠ACD=180°-∠D-∠DAC=180°-∠AEB-∠BAE=∠B…(5分)
(2)解:由(1)∠BAE=∠DAC,∠D=∠AEB,
∴△ABE∽△ACD,
∴$\frac{BE}{CD}=\frac{AB}{AC}$,
∵BC=2BE,BE=CE,
∴由切割线定理AB2=BC•BE=2BE2,
∴$\frac{AC}{CD}=\frac{AB}{BE}=\sqrt{2}$…..(10分)
点评 本题考查圆的切线的性质,考查三角形相似的判定与性质,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{3}$ | B. | $\frac{7π}{6}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 存在α∈(0,$\frac{π}{2}$),使sinα+cosα=$\frac{1}{3}$ | |
| B. | y=tanx在其定义域内为增函数 | |
| C. | y=cos2x+sin($\frac{π}{2}$-x)既有最大、最小值,又是偶函数 | |
| D. | y=sin|2x+$\frac{π}{6}$|的最小正周期为π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com