如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,G、H分别为DC、BC的中点.
(1)求证:平面FGH∥平面BDE;
(2)求证:平面ACF⊥平面BDE.
(1)见解析(2)见解析
【解析】学生错【解析】
证明:
(1)如图,设AC与BD交于点O,连结OE、OH.由已知EF=AB,得EF∥AB.
∵OH∥=AB,∴EF∥=OH,∴四边形OEFH为平行四边形,∴FH∥EO.
∵G、H分别为DC、BC的中点,∴GH∥DB.∴平面FGH∥平面BDE.
(2)由四边形ABCD为正方形,有AB⊥BC.又EF∥AB,∴EF⊥BC,
而EF⊥FB,∴EF⊥平面BFC.∵FH平面BFC,∴EF⊥FH.
∴AB⊥FH.又BF=FC,H为BC的中点,∴FH⊥BC,∴FH⊥平面ABCD.
∴FH⊥AC.又FH∥EO,∴AC⊥EO.又AC⊥BD,∴AC⊥平面BDE.
又AC平面ACF,∴平面ACF⊥平面BDE.
审题引导:(1)探索求解过程的关键是弄清线线平行?线面平行?面面平行;线线垂直?线面垂直?面面垂直;不要跳步造成错误,如本例(1),易出现由线线平行直接推得面面平行,从而导致证明过程错误.(2)正确理解运用线线、线面、面面的平行、垂直关系的判定定理和性质定理,特别注意将条件写完整,不可遗漏,如本例(2)在证明线、面垂直时,没有指出线线相交,就直接写出线面垂直,造成导致证明过程不严谨.
规范解答:证明:(1)设AC与BD交于点O,连结OE、OH,由已知EF=AB,得EF∥AB.(2分)
∵OH∥=AB,∴EF∥=OH,∴四边形OEFH为平行四边形,∴FH∥EO.(4分)
∵FH?平面BDE,EO?平面BDE,∴FH∥平面BDE.
∵G、H分别为DC、BC的中点,∴GH∥DB.
∵GH平面BDE,DB平面BDE,∴GH∥平面BDE.又∵FH∩GH=H,
∴平面FGH∥平面BDE.(6分)
(2)由四边形ABCD为正方形,有AB⊥BC.又EF∥AB,∴EF⊥BC,(8分)
而EF⊥FB,BC∩FB=B,∴EF⊥平面BFC.FH平面BFC,∴EF⊥FH.(10分)
∴AB⊥FH,又BF=FC,H为BC的中点,∴FH⊥BC,AB∩BC=B,∴FH⊥平面ABCD.
∴FH⊥AC,又FH∥EO,∴AC⊥EO.(12分)又AC⊥BD,EO∩BD=O,∴AC⊥平面BDE.
又AC平面ACF,∴平面ACF⊥平面BDE.(14分)
错因分析:证明两平面平行、垂直关系时一定要正确运用两平面平行或垂直的判定定理,并将相应的条件写全.本题(1)直接由线线平行推得面面平行,不符合面面平行的判定定理,导致证明过程不严谨.(2)在证明线、面垂直时,没有指出相交的条件;导致证题过程不正确.
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第六章第2课时练习卷(解析版) 题型:填空题
若点P(a,3)在2x+y<3表示的区域内,则实数a的取值范围是________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第八章第5课时练习卷(解析版) 题型:解答题
如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米).
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第八章第5课时练习卷(解析版) 题型:填空题
已知正方形ABCD的边长为2,E、F分别为BC、DC的中点,沿AE、EF、AF折成一个四面体,使B、C、D三点重合,则这个四面体的体积为________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第八章第4课时练习卷(解析版) 题型:解答题
在如图所示的多面体中,已知正三棱柱ABCA1B1C1的所有棱长均为2,四边形ABDC是菱形.
(1)求证:平面ADC1⊥平面BCC1B1;
(2)求该多面体的体积.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第八章第4课时练习卷(解析版) 题型:解答题
在直四棱柱ABCDA1B1C1D1中,底面ABCD是菱形.求证:平面B1AC∥平面DC1A1.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第八章第3课时练习卷(解析版) 题型:解答题
在空间四边形ABCD中,已知AC⊥BD,AD⊥BC,求证:AB⊥CD.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第八章第3课时练习卷(解析版) 题型:填空题
下列命题:①一条直线在平面内的射影是一条直线;②在平面内射影是直线的图形一定是直线;③在同一平面内的射影长相等,则斜线长相等;④两斜线与平面所成的角相等,则这两斜线互相平行.其中真命题的个数是________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第五章第6课时练习卷(解析版) 题型:填空题
在正项等比数列{an}中,a5=,a6+a7=3,则满足a1+a2+…+an>a1a2…an的最大正整数n的值为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com