精英家教网 > 高中数学 > 题目详情
14.过半径为5的球面上一点P作三条两两垂直的弦PA,PB,PC,且满足PA=2PB,则PA+PB+PC的最大值是2$\sqrt{70}$.

分析 由已知,三棱锥P-ABC的四个顶点均在半径为2的球面上,且PA,PB,PC两两垂直,球直径等于以PA,PB,PC为棱的长方体的对角线,得到5PB2+PC2=100,再结合三角换元法,由三角函数的性质得到PA+PB+PC的最大值.

解答 解:∵PA,PB,PC两两垂直,
又∵三棱锥P-ABC的四个顶点均在半径为5的球面上,
∴以PA,PB,PC为棱的长方体的对角线即为球的一条直径.
∴100=PA2+PB2+PC2,又PA=2PB,∴5PB2+PC2=100,
设PB=2$\sqrt{5}$cosα,PC=10sinα,
则PA+PB+PC=3PB+PC=6$\sqrt{5}$cosα+10sinα=2$\sqrt{70}$sin(α+∅)≤2$\sqrt{70}$.
则PA+PB+PC的最大值为2$\sqrt{70}$,
故答案为:2$\sqrt{70}$.

点评 本题考查的知识点是棱锥的侧面积,棱柱的外接球,其中根据已知条件,得到棱锥的外接球直径等于以PA,PB,PC为棱的长方体的对角线,是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设曲线f(x)=$\frac{x}{lnx}$在点P(x,f(x))处的切线在y轴上的截距为b,则当x∈(1,+∞)时,b的最小值为(  )
A.eB.$\frac{e}{2}$C.$\frac{{e}^{2}}{2}$D.$\frac{{e}^{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在极坐标系中,作出下列各点:
(1)A(2,$\frac{π}{6}$),B(6,-120°),C(1,$\frac{π}{3}$),
     D(4,-$\frac{3π}{4}$),E(4,0),F(2.5,180°);
(2)A(3,$\frac{π}{3}$),B(3,$\frac{π}{6}$),C(3,$\frac{π}{2}$),D(3,π),E(3,$\frac{3π}{2}$),并说明这5个点有什么关系;
(3)A(-2,$\frac{π}{6}$),B(-1,$\frac{π}{6}$),C(3,$\frac{π}{6}$),D(4.5,$\frac{π}{6}$),E(4.55,$\frac{π}{6}$),并说明这5个点有什么关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知不等式|ax+1|≤b的解集是[-1,3],求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求函数y=x+$\sqrt{1-2x}$-1的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\left\{\begin{array}{l}{x+1,x≤-2}\\{\stackrel{{x}^{2}+2x,-2<x<2}{2x-1,x≥2}}\end{array}\right.$
(1)求f(-5),f(-$\sqrt{3}$),f[f(-$\frac{5}{2}$)]的值;
(2)若f(a)=3,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)满足以下条件:①f(x)=2f(x-2);②当x∈[-1,1]时,f(x)=|x|-1.
(1)当x∈[-1,5]时,求函数y=f(x)+$\frac{1}{2}$的零点构成的集合;
(2)当x∈[-7,0]∪(0,7)时,利用图象法判断函数y=f(x)-log${\;}_{\frac{1}{3}}$|x|的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)写出函数y=x2-2x的单调区间及其图象的对称轴,观察:在函数图象对称轴两侧的单调性有什么特点?
(2)写出函数y=|x|的单调区间及其图象的对称轴,观察:在函数图象的对称轴两侧的单调性有什么特点?
(3)定义在[-4,8]上的函数y=f(x)的图象关于直线x=2对称,y=f(x)的部分图象如图所示.请补全函数y=f(x)的图象,并写出其单调区间,观察:在函数图象对称轴两侧的单调性有什么特点?
(4)由以上你发现了什么结论?(不需要证明)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若曲线y=$\frac{1}{2}$sinx与y=tanx在x=α(0<α<π且α≠$\frac{π}{2}$)处的切线互相垂直,则α=$\frac{2π}{3}$.

查看答案和解析>>

同步练习册答案