精英家教网 > 高中数学 > 题目详情
6.如图,△ABC的面积是78cm2,其中BD=DC,AF=FE=EC,那么阴影部分的面积为13cm2

分析 根据等底同高的三角形面积相等,可得△ABC的面积等于△BCE的面积的三倍,而△BCE的面积又是阴影部分面积的两倍,进而得到答案.

解答 解:∵△ABC的面积是78cm2,AF=FE=EC,
∴△BCE的面积是26cm2
又∵BD=DC,
∴阴影部分的面积为13cm2
故答案为:13cm2

点评 本题考查的知识点是三角形面积的求法,正确理解阴影部分面积是由哪几部分割(补)而成的,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.(1)求证$\frac{1}{2}≤\frac{1}{1×2}+\frac{1}{2×3}+…+\frac{1}{n(n+1)}<1$,(n∈N*
(2)已知a,b,c∈R,且a=b+c+1.证明:两个一元二次方程x2+x+b=0,x2+ax+c=0中至少有一个方程有两个不相等的实数根.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\left\{\begin{array}{l}{{(\frac{1}{2})}^{x},}&{x≤0}\\{f(2x-2)}&{0<x≤\frac{3}{2}}\end{array}\right.$,若方程f(x)=x+a有且只有三个不相等的实根,则实数a的取值范围是(  )
A.[0,1)B.[1,2)C.[1,3)D.[0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知集合A={y|y=x2-$\frac{3}{2}$x+1,x∈[0.5,2]},B={x|x+m2≥1}.命题p:x∈A,命题q:x∈B,且命题p是命题q的充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知定义域为Rf(x)满足f(a+b)=f(a)+f(b),且f(2)=2,那么f(3)等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.下列叙述中正确命题的个数是2.
①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;
③垂直于同一直线的两个平面相互平行;④若两个平面垂直,那么垂直于其中一个平面的直线与另一个平面平行.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若{an}是等比数列,且a1+a2+a3+a4+…+a2013=2013,a22$+{a}_{{3}^{\;}}$2+a42+a52+…+a20142=2014,则a3-a4+a5-a6+…+a2015=$\frac{2014}{2013}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设f(x)在x0处可导,试求极限$\underset{lim}{n→∞}$n[f(x0+$\frac{3}{n}$)-f(x0)].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=log2(ax2+2x+1)在($\frac{1}{2}$,1)上恒有f(x)>1,则实数a的取值范围为(  )
A.[0,+∞)B.(0,+∞)C.(1,+∞)D.(-∞,0]

查看答案和解析>>

同步练习册答案