精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
4x-4,x≤1
x2-4x+3,x>1
,g(x)=log2x,则F(x)=f(x)-g(x)的零点个数是(  )
分析:条件:“F(x)=f(x)-g(x)的零点”先化成方程:f(x)=g(x),分别画出函数y=f(x),g(x)=log2x的图象,结合图象即可解决.
解答:解:令F(x)=0得,f(x)-g(x)=0,
∴f(x)=g(x),
分别画出函数f(x)=
4x-4,x≤1
x2-4x+3,x>1
,g(x)=log2x的图象:
可得2个函数图象有3个交点,
故选B.
点评:本题考查函数的零点有数形结合的数学思想方法,数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
4(a-3)x+a+
1
2
(x<0)
ax,(x≥0)
,若函数f(x)的图象经过点(3,
1
8
),则a=
 
;若函数f(x)满足对任意x1≠x2
f(x1)-f(x2)
x1-x2
<0
都有成立,那么实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4-x2
|x-3|-3
,则它是(  )
A、奇函数B、偶函数
C、既奇又偶函数D、非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4-x2(x>0)
2(x=0)
1-2x(x<0)

(1)求f(a2+1)(a∈R),f(f(3))的值;
(2)当-4≤x<3时,求f(x)取值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4•2x+2
2x+1
+x•cosx (-1≤x≤1)
,且f(x)存在最大值M和最小值N,则M、N一定满足(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4-x2(x>0)
2(x=0)
1-2x(x<0)

(1)画出函数f(x)图象;
(2)求f(a2+1)(a∈R),f(f(3))的值;
(3)当-4≤x<3时,求f(x)取值的集合.

查看答案和解析>>

同步练习册答案