精英家教网 > 高中数学 > 题目详情
8.在△ABC中,D是AB的中点,过点D作DE∥BC,交AC于点E,若DE=4,则BC=8.

分析 由于DE∥BC,利用三角形中位线的性质,可得结论.

解答 解:∵DE∥BC,D是AB的中点,D是AB的中点,
∴DE=$\frac{1}{2}$BC,
∵DE=4,
∴BC=8.
故答案为8.

点评 此题主要考查的是角形中位线的性质,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.点P是椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$上的一点,F1和F2是焦点,且$∠{F_1}P{F_2}={60^0}$,则△F1PF2的周长为6,△F1PF2的面积为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.x,y满足线性约束条件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{2x-y+2≥0}\end{array}\right.$,若z=y+ax取得最大值的最优解不唯一,则a(  )
A.-2或1B.-2或-$\frac{1}{2}$C.-$\frac{1}{2}$或-1D.-$\frac{1}{2}$或1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知x+y=8,xy=9且x<y,求$\frac{{{x^{\frac{1}{2}}}+{y^{\frac{1}{2}}}}}{{{x^{\frac{1}{2}}}-{y^{\frac{1}{2}}}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若三点A(3,3),B(a,0),C(0,b)(其中a•b≠0)共线,则$\frac{1}{a}$+$\frac{1}{b}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.“b>1”是“直线l:x+3y-1=0与双曲线$\frac{x^2}{4}-\frac{y^2}{b^2}=1({b>0})$的左支有交点”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知A,B,C,D是抛物线y2=8x上的点,F是抛物线的焦点,且$\overrightarrow{FA}+\overrightarrow{FB}+\overrightarrow{FC}+\overrightarrow{FD}=\overrightarrow 0$,则$|\overrightarrow{FA}|+|\overrightarrow{FB}|+|\overrightarrow{FC}|+|\overrightarrow{FD}|$的值为(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.定义在(0,+∞)上的单调函数f(x)满足对一切x>0总有f[f(x)-log2x]=3,则g(x)=f(x)+x-4的零点个数是1(个).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列{an}满足an+1=$\frac{{a}_{n}-1}{{a}_{n}+1}$且a10=$\frac{1}{3}$,则{an}的前99项和为-$\frac{193}{6}$.

查看答案和解析>>

同步练习册答案