精英家教网 > 高中数学 > 题目详情
19.x,y满足线性约束条件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{2x-y+2≥0}\end{array}\right.$,若z=y+ax取得最大值的最优解不唯一,则a(  )
A.-2或1B.-2或-$\frac{1}{2}$C.-$\frac{1}{2}$或-1D.-$\frac{1}{2}$或1

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,得到直线y=2ax+z斜率的变化,从而求出a的取值.

解答 解:作出不等式组对应的平面区域如图:(阴影部分ABC).
由z=y+ax得y=-ax+z,即直线的截距最大,z也最大.
若a=0,此时y=z,此时,目标函数只在A处取得最大值,不满足条件,
若-a>0,即a<0,目标函数y=-ax+z的斜率k=-a>0,要使z=y+ax取得最大值的最优解不唯一,
则直线y=-ax+z与直线2x-y+2=0平行,此时a=-2,
若-a<0,即a>0,目标函数y=-ax+z的斜率k=-a<0,要使z=y+ax取得最大值的最优解不唯一,
则直线y=-ax+z与直线x+y-2=0,平行,此时-a=-1,解得a=1,
综上a=1或a=-2,
故选:A.

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.注意要对a进行分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.下列结论正确的个数为(  )
①命题“?x∈R,x2≥0”的否定是“?x0∈R,${x_0}^2≤0$”;
②命题“若$m≤\frac{1}{2}$,则方程mx2+2x+2=0有实数根”的否命题为真命题;
③“x≠3”是“|x|≠3”成立的充分不必要条件;
④锐角△ABC中,一定有“cosB<sinA<tanA”.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设命题$p:\frac{{2{x^2}}}{x+1}<1$,命题q:x2-(2a-1)x+a(a-1)≤0,若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若a∈R,则“a=1”是“|a|=1”的充分不必要条件.(填“充分不必要”,“必要不充分”,“充要”
或“既不充分也不必要”)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.命题:“?x∈[1,+∞),x3+2x<0”的否定是(  )
A.?x∈(-∞,0),x3+2x<0B.?x∈[0,+∞),x3+2x<0C.?x∈(-∞,0),x3+2x≥0D.?x∈[0,+∞),x3+2x≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知△ABC的三个角A,B,C的对边分别为a,b,c,且A,B,C成等差数列,且b=$\sqrt{3}$.数列{an}是等比数列,且首项a1=$\frac{1}{2}$,公比为$\frac{sinA}{a}$.
(1)求数列{an}的通项公式;
(2)若bn=-$\frac{lo{g}_{2}{a}_{n}}{{a}_{n}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=ln(ex+1)+ax是偶函数,g(x)=ex-be-x是奇函数.
(1)求a,b的值;
(2)判断g(x)的单调性(不要求证明);
(3)若不等式g(f(x))>g(m-x)在[1,+∞)上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,D是AB的中点,过点D作DE∥BC,交AC于点E,若DE=4,则BC=8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.三棱锥P-ABC中,PA=PB=PC,AB=4,BC=5,CA=6,若△ABC的外接圆恰好是三棱锥P-ABC外接球O的一个大圆,则三棱锥P-ABC的体积为:10.

查看答案和解析>>

同步练习册答案