分析 (1)根据函数奇偶性的性质即可求a,b的值;
(2)根据指数函数的单调性即可判断g(x)的单调性;
(3)根据函数的单调性将不等式g(f(x))>g(m-x)在[1,+∞)上恒成立,进行转化,即可求实数m的取值范围.
解答 解:(1)∵f(x)=ln(ex+1)-ax是偶函数,
∴f(-x)=f(x),
即f(-x)-f(x)=0,
则ln(e-x+1)+ax-ln(ex+1)+ax=0,
ln(ex+1)-x+2ax-ln(ex+1)=0,
则(2a-1)x=0,即2a-1=0,解得a=$\frac{1}{2}$.
若g(x)=ex-be-x是奇函数.
则g(0)=0,即1-b=0,
解得b=1;
(2)∵b=1,∴g(x)=ex-e-x,则g(x)单调递增;
(3)由(II)知g(x)单调递增;
则不等式g(f(x))>g(m-x)在[1,+∞)上恒成立,
等价为f(x)>m-x在[1,+∞)上恒成立,
即ln(ex+1)-$\frac{1}{2}$x>m-x在[1,+∞)上恒成立,
则m<ln(ex+1)+$\frac{1}{2}$x,
设m(x)=ln(ex+1)+$\frac{1}{2}$x,
则m(x)在[1,+∞)上单调递增,
∴m(x)≥m(1)=ln(1+e)+$\frac{1}{2}$,
则m<ln(1+e)+$\frac{1}{2}$,
则实数m的取值范围是(-∞,ln(1+e)+$\frac{1}{2}$).
点评 本题主要考查函数奇偶性的应用,函数单调性的判断以及不等式恒成立问题,利用参数分离法是解决恒成立问题的基本方法.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2或1 | B. | -2或-$\frac{1}{2}$ | C. | -$\frac{1}{2}$或-1 | D. | -$\frac{1}{2}$或1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | a<c<b | C. | b<a<c | D. | c<a<b |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 8 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com