精英家教网 > 高中数学 > 题目详情
(本小题满分13分)
,点的坐标为(1,1),点在抛物线上运动,点满足,经过点与轴垂直的直线交抛物线于点,点满足,求点的轨迹方程。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆的中心在原点,焦点在轴上,点分别是椭圆的左、右焦点,在直线(分别为椭圆的长半轴和半焦距的长)上的点
,满足线段的中垂线过点.过原点且斜率均存在的直线互相垂直,且截椭圆所得的弦长分别为
(Ⅰ)求椭圆的方程;
(Ⅱ)求的最小值及取得最小值时直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)

如图,已知椭圆C1的中心在原点O,长轴左、右端点MNx轴上,椭圆C2的短轴为MN,且C1C2的离心率都为e,直线l⊥MN,lC1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为ABCD
(I)设,求的比值;
(II)当e变化时,是否存在直线l,使得BOAN,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线与椭圆有共同的焦点,点在双曲线C上.
(1)求双曲线C的方程;
(2)以P(1,2)为中点作双曲线C的一条弦AB,求弦AB所在直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

方程所表示的曲线为     
A.焦点在轴上的椭圆B.焦点在轴上的椭圆
C.焦点在轴上的双曲线D.焦点在轴上的双曲线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分6分,第3小题满分7分
已知曲线的方程为为曲线上的两点,为坐标原点,且有
(1)若所在直线的方程为,求的值;
(2)若点为曲线上任意一点,求证:为定值;
(3)在(2)的基础上,用类比或推广的方法对新的圆锥曲线写出一个命题,并对该命题加以证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

双曲线P到左准线的距离是       

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线C的顶点在坐标原点,焦点在x轴上,直线与抛物线C相交
于A,B两点,若是AB的中点,则抛物线C的方程为_______________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

为常数,若点是双曲线的一个焦点,则            。

查看答案和解析>>

同步练习册答案