精英家教网 > 高中数学 > 题目详情
(本小题满分12分)已知椭圆的中心在原点,焦点在轴上,点分别是椭圆的左、右焦点,在直线(分别为椭圆的长半轴和半焦距的长)上的点
,满足线段的中垂线过点.过原点且斜率均存在的直线互相垂直,且截椭圆所得的弦长分别为
(Ⅰ)求椭圆的方程;
(Ⅱ)求的最小值及取得最小值时直线的方程.
解:(Ⅰ)设椭圆C的方程为半焦距为,依题意有所以, ………3分
解得,所以, 
所以,所求椭圆方程为………5分
(Ⅱ)设,则
直线与椭圆联立得:
所以,,………7分
同理可得:所以,  ………8分
所以,
………10分
当仅当时取最小值,此时两直线的方程分别为………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)在平面直角坐标系中,设点,直线:,点在直线上移动,是线段轴的交点,
(I)求动点的轨迹的方程
(II)设圆,且圆心在曲线上, 设圆,且圆心在曲线 上,是圆轴上截得的弦,当运动时弦长是否为定值?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)设椭圆的左、右焦点分别为F1
F2,直线过椭圆的一个焦点F2且与椭圆交于P、Q两点,若的周长为
(1)求椭圆C的方程;
(2)设椭圆C经过伸缩变换变成曲线,直线与曲线相切
且与椭圆C交于不同的两点A、B,若,求面积的取值范围。(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心在原点,焦点在轴上,长轴长是短轴长的倍且经过点M
(Ⅰ)求椭圆C的方程
(Ⅱ)过圆上的任一点作圆的一条切线交椭圆C与A、B两点
①求证:
②求|AB|的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的焦点,点P在椭圆上,如果线段的中点在
上,那么的值为(  )
A.7 :1B.5 :1C.9 :2D.8 :3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知点,过点作抛物线的切线,切点在第二象限,如图.
(Ⅰ)求切点的纵坐标;
(Ⅱ)若离心率为的椭圆 恰好经过切点,设切线交椭圆的另一点为,记切线的斜率分别为,若,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)(注意:在试题卷上作答无效)
已知的顶点A在射线上,两点关于x轴对称,0为坐标原点,
且线段AB上有一点M满足当点A在上移动时,记点M的轨迹为W.
(Ⅰ)求轨迹W的方程;
(Ⅱ)设是否存在过的直线与W相交于P,Q两点,使得若存在,
求出直线;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)阅读下列材料,解决数学问题.圆锥曲线具有非常漂亮的光学性质,被人们广泛地应用于各种设计之中,比如椭圆镜面用来制作电影放映机的聚光灯,抛物面用来制作探照灯等,它们的截面分别是椭圆和抛物线.双曲线也具有非常好的光学性质,从双曲线的一个焦点发出的光线,经过双曲线反射后,反射光线是发散的,它们好像是从另一个焦点射出的一样,如图(1)所示.反比例函数的图像是以直线为轴,以坐标轴为渐近线的等轴双曲线,记作C.
(Ⅰ)求曲线C的离心率及焦点坐标;
(Ⅱ)如图(2),从曲线C的焦点F处发出的光线经双曲线反射后得到的反射光线与入射光线垂直,求入射光线的方程.
(1)          (2) 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
,点的坐标为(1,1),点在抛物线上运动,点满足,经过点与轴垂直的直线交抛物线于点,点满足,求点的轨迹方程。

查看答案和解析>>

同步练习册答案