精英家教网 > 高中数学 > 题目详情
已知椭圆C的中心在原点,焦点在轴上,长轴长是短轴长的倍且经过点M
(Ⅰ)求椭圆C的方程
(Ⅱ)过圆上的任一点作圆的一条切线交椭圆C与A、B两点
①求证:
②求|AB|的取值范围
解:(Ⅰ)设椭圆的长半轴长为,短轴长为,则由题意可得:
,所以椭圆的方程为
(Ⅱ)①当切线的斜率不存在时切线为与椭圆的两个交点为

当切线斜率存在时,可设的方程为.解方程组,即, .   
则△=,即
,



②由①可知:




因为所以,
所以,
所以当且仅当时取”=”
时,.
当AB的斜率不存在时, 两个交点为,所以此时,
综上, |AB |的取值范围为即:
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知曲线C上任意一点M到点F(0,1)的距离比它到直线 的距离小1.
(1)求曲线C的方程;
(2)过点P(2,2)的直线与曲线C交于A、B两点,设当△AOB的面积为时(O为坐标原点),求的值.
(3)若函数在[1,3]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
定长为3的线段AB两端点A、B分别在轴,轴上滑动,M在线段AB上,且
(1)求点M的轨迹C的方程;
(2)设过且不垂直于坐标轴的动直线交轨迹C于A、B两点,问:线段
是否存在一点D,使得以DA,DB为邻边的平行四边形为菱形?作出判断并证明。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)从圆:外一动点向圆引一条切线,切点为,且(为坐标原点),求的最小值和取得最小值时点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆的中心在原点,焦点在轴上,点分别是椭圆的左、右焦点,在直线(分别为椭圆的长半轴和半焦距的长)上的点
,满足线段的中垂线过点.过原点且斜率均存在的直线互相垂直,且截椭圆所得的弦长分别为
(Ⅰ)求椭圆的方程;
(Ⅱ)求的最小值及取得最小值时直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

双曲线P到左准线的距离是       

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,双曲线(>0)经过四边形OABC的顶点A、C,∠ABC=90°,
OC平分OA与轴正半轴的夹角,AB∥轴,将△ABC沿AC翻折后得△
落在OA上,则四边形OABC的面积是         .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线C的顶点在坐标原点,焦点在x轴上,直线与抛物线C相交
于A,B两点,若是AB的中点,则抛物线C的方程为_______________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

为常数,若点是双曲线的一个焦点,则            。

查看答案和解析>>

同步练习册答案