精英家教网 > 高中数学 > 题目详情
如图,双曲线(>0)经过四边形OABC的顶点A、C,∠ABC=90°,
OC平分OA与轴正半轴的夹角,AB∥轴,将△ABC沿AC翻折后得△
落在OA上,则四边形OABC的面积是         .
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

对任意实数,直线与椭圆恒有公共点,则
取值范围是         

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线过抛物线的焦点,交抛物线于两点,且点轴上方,
若直线的倾斜角,则的取值范围是(   )
A. B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心在原点,焦点在轴上,长轴长是短轴长的倍且经过点M
(Ⅰ)求椭圆C的方程
(Ⅱ)过圆上的任一点作圆的一条切线交椭圆C与A、B两点
①求证:
②求|AB|的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面区域是由双曲线的两条渐近线和抛物线的准线所围
成的三角形(含边界与内部).若点,则目标函数的最大值为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点在直线上移动,当取最小值时,过点P引圆的切线,则此切线长等于
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本小题满分12分)
已知O为坐标原点,F为椭圆在y轴正半轴上的焦点,过F且斜率为的直线与C交于A、B两点,点P满足   
(Ⅰ)证明:点P在C上;
(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一个圆上。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点M是抛物线y2=4x上的一点,F为抛物线的焦点,A在圆C:(x-4)2+(y-1)2=1上,则|MA|+|MF|的最小值为________

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)阅读下列材料,解决数学问题.圆锥曲线具有非常漂亮的光学性质,被人们广泛地应用于各种设计之中,比如椭圆镜面用来制作电影放映机的聚光灯,抛物面用来制作探照灯等,它们的截面分别是椭圆和抛物线.双曲线也具有非常好的光学性质,从双曲线的一个焦点发出的光线,经过双曲线反射后,反射光线是发散的,它们好像是从另一个焦点射出的一样,如图(1)所示.反比例函数的图像是以直线为轴,以坐标轴为渐近线的等轴双曲线,记作C.
(Ⅰ)求曲线C的离心率及焦点坐标;
(Ⅱ)如图(2),从曲线C的焦点F处发出的光线经双曲线反射后得到的反射光线与入射光线垂直,求入射光线的方程.
(1)          (2) 

查看答案和解析>>

同步练习册答案