精英家教网 > 高中数学 > 题目详情
本小题满分12分)
已知O为坐标原点,F为椭圆在y轴正半轴上的焦点,过F且斜率为的直线与C交于A、B两点,点P满足   
(Ⅰ)证明:点P在C上;
(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一个圆上。
(Ⅰ)证明:易知:,故:,代入椭圆方程得:
,则
因为所以
,将此坐标代入椭圆:
所以点P在C上。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知双曲线与椭圆有共同的焦点,点在双曲线C上.
(1)求双曲线C的方程;
(2)以P(1,2)为中点作双曲线C的一条弦AB,求弦AB所在直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆(常数),点上的动点,是右顶点,定点的坐标为
⑴若重合,求的焦点坐标;
⑵若,求的最大值与最小值;
⑶若的最小值为,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设直线l与抛物线y2=2px(p>0)交于A、B两点,已知当直线l经过抛物线的焦点且与x轴垂直时,△OAB的面积为(O为坐标原点).
(Ⅰ)求抛物线的方程;
(Ⅱ)当直线l经过点P(a,0)(a>0)且与x轴不垂直时,
若在x轴上存在点C,使得△ABC为等边三角形,求a
的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)已知F1,F2是椭圆的左、右焦点,点P(-1,)在椭圆上,线段PF2轴的交点满足.(1)求椭圆的标准方程;
(2)过F1作不与轴重合的直线,与圆相交于A、B.并与椭圆相交于C、D.当,且时,求△F2CD的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知点(x, y) 在曲线C上,将此点的纵坐标变为原来的2倍,对应的横坐标不变,得到的点满足方程;定点M(2,1),平行于OM的直线在y轴上的截距为m(m≠0),直线与曲线C交于A、B两个不同点.
(1)求曲线的方程;             
(2)求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,双曲线(>0)经过四边形OABC的顶点A、C,∠ABC=90°,
OC平分OA与轴正半轴的夹角,AB∥轴,将△ABC沿AC翻折后得△
落在OA上,则四边形OABC的面积是         .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

为常数,若点是双曲线的一个焦点,则            。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,点A(4,0)、B(1,0),动点P满足
(1)求点P的轨迹C的方程;
(2)若直线与轨迹C相交于M、N两点,直线与轨迹C相交于P、Q
两点,顺次连接M,N,P,Q得到的四边形MNPQ是棱形,求b。

查看答案和解析>>

同步练习册答案