精英家教网 > 高中数学 > 题目详情
已知双曲线与椭圆有共同的焦点,点在双曲线C上.
(1)求双曲线C的方程;
(2)以P(1,2)为中点作双曲线C的一条弦AB,求弦AB所在直线的方程.
解:(1)由已知双曲线C的焦点为
由双曲线定义

所求双曲线为
(2)设,因为在双曲线上



 
        ①-②得

    
弦AB的方程为
经检验为所求直线方程.       
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设直线
(I)证明相交;
(II)证明的交点在椭圆上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点在直线上移动,当取最小值时,过点P引圆的切线,则此切线长等于
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本小题满分12分)
已知O为坐标原点,F为椭圆在y轴正半轴上的焦点,过F且斜率为的直线与C交于A、B两点,点P满足   
(Ⅰ)证明:点P在C上;
(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一个圆上。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一条线段AB的长为2,两个端点A和B分别在x轴和y轴上滑动,则线段AB的中点的轨迹是(  )
A.双曲线B.双曲线的一分支
C.圆D.椭圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点M是抛物线y2=4x上的一点,F为抛物线的焦点,A在圆C:(x-4)2+(y-1)2=1上,则|MA|+|MF|的最小值为________

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)阅读下列材料,解决数学问题.圆锥曲线具有非常漂亮的光学性质,被人们广泛地应用于各种设计之中,比如椭圆镜面用来制作电影放映机的聚光灯,抛物面用来制作探照灯等,它们的截面分别是椭圆和抛物线.双曲线也具有非常好的光学性质,从双曲线的一个焦点发出的光线,经过双曲线反射后,反射光线是发散的,它们好像是从另一个焦点射出的一样,如图(1)所示.反比例函数的图像是以直线为轴,以坐标轴为渐近线的等轴双曲线,记作C.
(Ⅰ)求曲线C的离心率及焦点坐标;
(Ⅱ)如图(2),从曲线C的焦点F处发出的光线经双曲线反射后得到的反射光线与入射光线垂直,求入射光线的方程.
(1)          (2) 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
,点的坐标为(1,1),点在抛物线上运动,点满足,经过点与轴垂直的直线交抛物线于点,点满足,求点的轨迹方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题



如图,设是圆珠笔上的动点,点D是轴上的投影,M为D上一点,且
(Ⅰ)当的在圆上运动时,求点M的轨迹C的方程;
(Ⅱ)求过点(3,0)且斜率为的直线被C所截线段的长度。

查看答案和解析>>

同步练习册答案