精英家教网 > 高中数学 > 题目详情
已知抛物线C的顶点在坐标原点,焦点在x轴上,直线与抛物线C相交
于A,B两点,若是AB的中点,则抛物线C的方程为_______________.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设直线
(I)证明相交;
(II)证明的交点在椭圆上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
抛物线的顶点在原点,焦点F与双曲线的右焦点重合,过点且斜率为1的直线与抛物线交于两点
(1)求抛物线的方程
(2)求弦中点到抛物线准线的距离

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心在原点,焦点在轴上,长轴长是短轴长的倍且经过点M
(Ⅰ)求椭圆C的方程
(Ⅱ)过圆上的任一点作圆的一条切线交椭圆C与A、B两点
①求证:
②求|AB|的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知点,过点作抛物线的切线,切点在第二象限,如图.
(Ⅰ)求切点的纵坐标;
(Ⅱ)若离心率为的椭圆 恰好经过切点,设切线交椭圆的另一点为,记切线的斜率分别为,若,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点在直线上移动,当取最小值时,过点P引圆的切线,则此切线长等于
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是三角形的一个内角,且,则方程所表示的曲线为(    ).
A.焦点在轴上的椭圆B.焦点在轴上的椭圆
C.焦点在轴上的双曲线D.焦点在轴上的的双曲线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)阅读下列材料,解决数学问题.圆锥曲线具有非常漂亮的光学性质,被人们广泛地应用于各种设计之中,比如椭圆镜面用来制作电影放映机的聚光灯,抛物面用来制作探照灯等,它们的截面分别是椭圆和抛物线.双曲线也具有非常好的光学性质,从双曲线的一个焦点发出的光线,经过双曲线反射后,反射光线是发散的,它们好像是从另一个焦点射出的一样,如图(1)所示.反比例函数的图像是以直线为轴,以坐标轴为渐近线的等轴双曲线,记作C.
(Ⅰ)求曲线C的离心率及焦点坐标;
(Ⅱ)如图(2),从曲线C的焦点F处发出的光线经双曲线反射后得到的反射光线与入射光线垂直,求入射光线的方程.
(1)          (2) 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
,点的坐标为(1,1),点在抛物线上运动,点满足,经过点与轴垂直的直线交抛物线于点,点满足,求点的轨迹方程。

查看答案和解析>>

同步练习册答案