【题目】关于x的不等式4x+x﹣a≤ 在x∈[0, ]上恒成立,则实数a的取值范围是( )
A.(﹣∞,﹣ ]
B.(0,1]
C.[﹣ ,1]
D.[1,+∞)
科目:高中数学 来源: 题型:
【题目】极坐标与参数方程
在直角坐标系,直线的参数方程是(为参数).在以为极点, 轴正半轴为极轴建立极坐标系中,曲线: .
(1)当, 时,判断直线与曲线的位置关系;
(2)当时,若直线与曲线相交于, 两点,设,且,求直线的倾斜角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆为参数), 是上的动点,且满足为坐标原点),以原点为极点, 轴的正半轴为极轴建立坐标系,点的极坐标为.
(1)求线段的中点的轨迹的普通方程;
(2)利用椭圆的极坐标方程证明为定值,并求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(数学文卷·2017届湖北省黄冈市高三上学期期末考试第16题) “中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”. “中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列,则此数列的项数为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校的平面示意图为如下图五边形区域,其中三角形区域为生活区,四边形区域为教学区, 为学校的主要道路(不考虑宽度). .
(1)求道路的长度;(2)求生活区面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com