【题目】把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,并且不许有空盒,那么任意一个小球都不能放入标有相同标号的盒子中的概率是( )
A.
B.
C.
D.![]()
【答案】B
【解析】
由题意可以分两类,第一类第5球独占一盒,第二类,第5球不独占一盒,根据分类计数原理得到答案.
解:第一类,第5球独占一盒,则有4种选择;
如第5球独占第一盒,则剩下的三盒,先把第1球放旁边,就是2,3,4球放入2,3,4盒的错位排列,有2种选择,
再把第1球分别放入2,3,4盒,有3种可能选择,于是此时有
种选择;
如第1球独占一盒,有3种选择,剩下的2,3,4球放入两盒有2种选择,此时有
种选择,
得到第5球独占一盒的选择有
种,
第二类,第5球不独占一盒,先放
号球,4个球的全不对应排列数是9;第二步放5号球:有4种选择;
,
根据分类计数原理得,不同的方法有
种.
而将五球放到4盒共有
种不同的办法,
故任意一个小球都不能放入标有相同标号的盒子中的概率![]()
故选:
.
科目:高中数学 来源: 题型:
【题目】在新冠肺炎疫情的影响下,南充高中响应“停课不停教,停课不停学”的号召进行线上教学,高二年级的甲乙两个班中,需根据某次数学测试成绩选出某班的5名学生参加数学竞赛决赛,已知这次测试他们取得的成绩的茎叶图如图所示,其中甲班5名学生成绩的平均分是83,乙班5名学生成绩的中位数是86.
![]()
(1)求出x,y的值,且分别求甲乙两个班中5名学生成绩的方差
,并根据结
果,你认为应该选派哪一个班的学生参加决赛?
(2)从成绩在85分及以上的学生中随机抽取2名.求至少有1名来自甲班的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题p:函数f(x)=lg(ax2-x+16a)的定义域为R;命题q:不等式3x-9x<a对任意x∈R恒成立.
(1)如果p是真命题,求实数a的取值范围;
(2)如果命题“p或q”为真命题且“p且q”为假命题,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
左、右顶点分别为A、B,上顶点为D(0,1),离心率为
.
(1)求椭圆C的标准方程;
(2)若点E是椭圆C上位于x轴上方的动点,直线AE、BE与直线
分别交于M、N两点,当线段MN的长度最小时,椭圆C上是否存在点T使
的面积为
?若存在,求出点T的坐标:若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:![]()
的左右焦点分别是
,抛物线
与椭圆
有相同的焦点,点
为抛物线与椭圆
在第一象限的交点,且满足![]()
![]()
(1)求椭圆
的方程;
(2)与抛物线相切于第一象限的直线
,与椭圆交于
两点,与
轴交于点
,线段
的垂直平分线与
轴交于点
,求直线
斜率的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和为
,且
,
.
(1)若数列
是等差数列,且
,求实数
的值;
(2)若数列
满足
(
),且
,求证:
是等差数列;
(3)设数列
是等比数列,试探究当正实数
满足什么条件时,数列
具有如下性质
:对于任意的
(
),都存在
,使得
,写出你的探究过程,并求出满足条件的正实数
的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业为了检查甲、乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取
件产品作为样本称出它们的质量(单位:毫克),质量值落在
的产品为合格品,否则为不合格品.如表是甲流水线样本频数分布表,如图是乙流水线样本的频率分布直方图.
![]()
产品质量/毫克 | 频数 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(Ⅰ)以样本的频率作为概率,试估计从甲流水线上任取
件产品,求其中不合格品的件数
的数学期望.
甲流水线 | 乙流水线 | 总计 | |
合格品 | |||
不合格品 | |||
总计 |
(Ⅱ)由以上统计数据完成下面
列联表,能否在犯错误的概率不超过
的前提下认为产品的包装合格与两条自动包装流水线的选择有关?
(Ⅲ)由乙流水线的频率分布直方图可以认为乙流水线生产的产品质量
服从正态分布
,求质量
落在
上的概率.
参考公式:![]()
![]()
参考数据:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
参考公式:
,其中
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com