科目:高中数学 来源:2014届黑龙江省高二下学期期末考试理科数学试卷(解析版) 题型:解答题
已知函数
对于任意的
满足
.
(1)求
的值;
(2)求证:
为偶函数;
(3)若
在
上是增函数,解不等式![]()
查看答案和解析>>
科目:高中数学 来源:2012-2013学年陕西省高三上学期第三次月考理科数学试卷(解析版) 题型:解答题
已知函数
对于任意正实数
都有
,且
时,![]()
。
(1)证明![]()
(2)求证:
在
上为减函数。
查看答案和解析>>
科目:高中数学 来源:2015届吉林省高一第一次月考数学试卷(解析版) 题型:解答题
(本小题满分12分)
已知函数
对于任意
, 总有
,
并且当
,![]()
⑴求证
为
上的单调递增函数
⑵若
,求解不等式![]()
查看答案和解析>>
科目:高中数学 来源:2013届重庆市高二下期中文科数学试卷(解析版) 题型:解答题
已知函数
对于任意
,总有
,且x > 0时,
,
.
(1)求证:
在R上是减函数;
(2)求
在 [– 2,2] 上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三12月月考理科数学 题型:解答题
(本小题满分14分)已知函数
对于任意
都有
且当
时,有
。
(1) 判断
的奇偶性与单调性,并证明你的结论;
(2) 设不等式
对于一切
恒成立,求整数
的最小值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com