精英家教网 > 高中数学 > 题目详情
已知c>0,设p:函数y=cx在R上单调递减;q:函数g(x)=lg(2cx2+2x+1)的值域为R,如果“p且q”为假命题,“p或q为真命题,则c的取值范围是(  )
A.(
1
2
,1)
B.(
1
2
,+∞)
C.(0,
1
2
]∪[1,+∞)
D.(-∞,+∞)
∵如果P∧Q为假命题,P∨Q为真命题,
∴p、q中一个为真命题、一个为假命题
①若p为真命题,q为假命题
则0<c<1且 c>
1
2

1
2
<c<1
②若p为假命题,q为真命题
则c>1且c≤
1
2

这样的c不存在
综上,
1
2
<c<1
故选A.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知c>0,设P:函数y=cx在R上单调递减,Q:不等式x+|x-2c|>1的解集为R.如果P和Q有且仅有一个正确,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知c>0,设p:函数y=cx在R上单调递减;q:函数g(x)=lg(2cx2+2x+1)的值域为R,如果“p且q”为假命题,“p或q为真命题,则c的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知c>0,设P:函数y=cx在R上单调递减,Q:不等式x+|x-2c|>1对任意实数x恒成立,若“P或Q”为真,“P且Q”为假,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知c>0,设P:函数y=cx在R上单调递减,Q:当x∈[
1
2
,2]时,不等式5c<x+
1
x
有解,若“P或Q”为真,“P且Q”为假,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知c>0,设p:函数y=cx在R上单调递减;q:函数g(x)=lg(2cx2+2x+1)的定义域为R,若“p且q”为假命题,“p或q”为真命题,求c的取值范围.

查看答案和解析>>

同步练习册答案