精英家教网 > 高中数学 > 题目详情
如图,四面体ABCD中,点E是CD的中点,记
AB
=
a
AC
=
b
AD
=
c
,则
BE
=(  )
A.
a
-
1
2
b
+
1
2
c
B.-
a
+
1
2
b
+
1
2
c
C.
1
2
a
-
b
+
1
2
c
D.-
1
2
a
+
b
+
1
2
c

连接AE,
∵E是CD的中点,
AC
=
b
AD
=
c

AE
=
1
2
(
AC
+
AD
)=
1
2
(
b
+
c
)

∵△ABE中,
BE
=
BA
+
AE
=-
AB
+
AE
AB
=
a

BE
=-
a
+
1
2
(
b
+
c
)
=-
a
+
1
2
b
+
1
2
c

故选:B
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,四棱锥SABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.

(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角PACD的大小;
(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量
(1)若, 且-. 求
(2)求函数||的单调增区间和函数图像的对称轴方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设平面向量,则(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在四面体O-ABC中,点P为棱BC的中点.设
OA
=
a
OB
=
b
OC
=
c
,那么向量
AP
用基底{
a
b
c
}可表示为(  )
A.-
1
2
a+
1
2
b+
1
2
c
B.-a+
1
2
b+
1
2
c
C.a+
1
2
b+
1
2
c
D.
1
2
a+
1
2
b+
1
2
c

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知向量
i
j
k
不共面,向量
a
=
i
-2
j
+
k
b
=-
i
+3
j
+2
k
c
=-3
i
+x
j
共面,则x=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题中正确的是(  )
A.若
a
b
b
c
,则
a
c
所在直线平行
B.向量
a
b
c
共面即它们所在直线共面
C.空间任意两个向量共面
D.若
a
b
,则存在唯一的实数λ,使
a
b

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正三棱柱ABC-A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦等于(  ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知,线段AB的中点为M,

(1)求证:
(2)求点M的坐标.

查看答案和解析>>

同步练习册答案