精英家教网 > 高中数学 > 题目详情
数列{an}中a1=a,a2=b,且满足an+1=an+an+2则a2012的值为(  )
分析:由数列{an}中a1=a,a2=b,且满足an+1=an+an+2,知a3=b-a,a4=b-a-b=-a,a5=-a-(b-a)=-b,a6=-b-(-a)=a-b,a7=(a-b)-(-b)=a,a8=a-(a-b)=b,a9=b-a,…故数列{an}是以6为周期的周期数列,由此能求出a2012
解答:解:∵数列{an}中a1=a,a2=b,
且满足an+1=an+an+2
∴a3=b-a,
a4=b-a-b=-a,
a5=-a-(b-a)=-b,
a6=-b-(-a)=a-b,
a7=(a-b)-(-b)=a,
a8=a-(a-b)=b,
a9=b-a,

∴数列{an}是以6为周期的周期数列,
∴2012=335×6+2,
∴a2012=a2=b,
故选A.
点评:本题地考查数列的递推公式的应用,是基础题.解题时要认真审题,仔细解答,注意递推思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}中a1=2,an+1=
1
2
(an+
1
an
)
,{bn}中bn • log9
an+1
an-1
=1,n∈N*
.求证:数列{bn}为等比数列,并求出其通项公式;

查看答案和解析>>

科目:高中数学 来源: 题型:

下面几种推理过程是演绎推理的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an} 中a1=
1
2
,前n项和Sn满足Sn+1-Sn=(
1
2
)n+1
(n∈N*).
( I ) 求数列{an}的通项公式an以及前n项和Sn
(Ⅱ)记  bn=
n+1
2an
(n∈N*)求数列{bn} 的前n项和Tn
(Ⅲ)试确定Tn
5n
4n+2
(n∈N*)的大小并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中a1=1,an+1=an+
1
n2+n
,则an=
2n-1
n
2n-1
n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
x2
+4(x≠0),各项均为正数的数列{an}中a1=1,
1
an+12
=f(an)(n∈N+).
(1)求数列{an}的通项公式;
(2)数列{bn}满足:?n∈N+bn=
a
2
n
(3n-1)
a
2
n
+n
,Sn为数列{bn}的前n项和,若Sn>a对?n∈N+恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案