【题目】已知函数f(x)=plnx+(p﹣1)x2+1.
(1)讨论函数f(x)的单调性;
(2)当P=1时,f(x)≤kx恒成立,求实数k的取值范围;
(3)证明:1n(n+1)<1+ …+ (n∈N+).
【答案】
(1)解:f(x)的定义域为(0,+∞),f′(x)= ,
当p≥1时,f′(x)>0,故f(x)在(0,+∞)上单调递增;
当p≤0时,f′(x)<0,故f(x)在(0,+∞)上单调递减;
当0<p<1时,令f′(x)=0,解得x= .
则当x 时,f′(x)>0;x 时,f′(x)<0,
故f(x)在(0, )上单调递增,在 上单调递减
(2)解:∵x>0,
∴当p=1时,f(x)≤kx恒成立1+lnx≤kxk≥ ,
令h(x)= ,则k≥h(x)max,
∵h′(x)= =0,得x=1,
且当x∈(0,1),h′(x)>0;当x∈(1,+∞),h′(x)<0;
所以h(x)在0,1)上递增,在(1,+∞)上递减,
所以h(x)max=h(1)=1,
故k≥1.
(3)证明:由(2)知,当k=1时,有f(x)≤x,当x>1时,f(x)<x,即lnx<x﹣1,
∴令x= ,则 ,即 ,
∴ln2﹣ln1<1, ,
相加得1n(n+1)<1+ …+
【解析】(1)利用导数来讨论函数的单调性即可,具体的步骤是:(1)确定 f(x)的定义域;(2)求导数fˊ(x);(3)在函数 的定义域内解不等式fˊ(x)>0和fˊ(x)<0;(4)确定 的单调区间.若在函数式中含字母系数,往往要分类讨论.(2)当P=1时,f(x)≤kx恒成立,分离参数等价于k≥ ,利用导数求函数h(x)= 的最大值即可求得实数k的取值范围;(3)由(2)知,当k=1时,有f(x)≤x,当x>1时,f(x)<x,即lnx<x﹣1,令x= ,则得到 ,利用导数的运算法则进行化简,然后再相加,即可证得结论.
【考点精析】利用利用导数研究函数的单调性对题目进行判断即可得到答案,需要熟知一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.
科目:高中数学 来源: 题型:
【题目】在极坐标系中,已知三点O(0,0),A(2, ),B(2 , ).
(1)求经过O,A,B的圆C1的极坐标方程;
(2)以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,圆C2的参数方程为 (θ是参数),若圆C1与圆C2外切,求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题中,正确的个数是( )
①命题“存在x∈R,x2﹣x>0”的否定是“对于任意的x∈R,x2﹣x<0”;
②若函数f(x)在(2016,2017)上有零点,则f(2016)f(2017)<0;
③在公差为d的等差数列{an}中,a1=2,a1 , a3 , a4成等比数列,则公差d为﹣ ;
④函数y=sin2x+cos2x在[0, ]上的单调递增区间为[0, ].
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= .
(1)求曲线y=f(x)在点(0,f(0))处的切线方程和函数f(x)的极值:
(2)若对任意x1 , x2∈[a,+∞),都有f(x1)﹣f(x2)≥﹣ 成立,求实数a的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知 分别是椭圆 的左、右焦点,离心率为 , , 分别是椭圆的上、下顶点, .
(Ⅰ)求椭圆 的方程;
(Ⅱ)过 (0,2)作直线 与 交于 两点,求三角形 面积的最大值( 是坐标原点).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= sin2x+sinxcosx﹣
(1)求函数y=f(x)在[0, ]上的单调递增区间;
(2)将函数y=f(x)的图象向左平移 个单位长度,再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=g(x)的图象,求证:存在无穷多个互不相同的整数x0 , 使得g(x0)> .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】上海市松江区天马山上的“护珠塔”因其倾斜度超过意大利的比萨斜塔而号称“世界第一斜塔”.兴趣小组同学实施如下方案来测量塔的倾斜度和塔高:如图,记O点为塔基、P点为塔尖、点P在地面上的射影为点H.在塔身OP射影所在直线上选点A,使仰角k∠HAP=45°,过O点与OA成120°的地面上选B点,使仰角∠HPB=45°(点A,B,O都在同一水平面上),此时测得∠OAB=27°,A与B之间距离为33.6米.试求:
(1)塔高(即线段PH的长,精确到0.1米);
(2)塔身的倾斜度(即PO与PH的夹角,精确到0.1°).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com