精英家教网 > 高中数学 > 题目详情

【题目】已知四棱锥的底面为直角梯形,°,底面,且的中点.

(1)证明平面平面

(2)求所成角的余弦值;

(3)求平面与平面所成二面角(锐角的余弦值.

【答案】(1)见解析;(2);(3)

【解析】

试题(1)利用面面垂直的性质,证明CD⊥平面PAD.

(2)建立空间直角坐标系,写出向量的坐标,然后由向量的夹角公式求得余弦值,从而得所成角的大小.

(3)分别求出平面的法向量和面的一个法向量,然后求出两法向量的夹角即可.

试题解析:证明:以为坐标原点长为单位长度,如图建立空间直角坐标系,则各点坐标为.

(1)证明:因

由题设知,且是平面内的两条相交直线,由此得.又在面上,故面⊥面.

(2)因

(3)平面的一个法向量设为

平面的一个法向量设为

所求二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在矩形中,为边的中点.将△沿翻折,得到四棱锥.设线段的中点为,在翻折过程中,有下列三个命题:

总有平面

三棱锥体积的最大值为

存在某个位置,使所成的角为

其中正确的命题是____.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校为增加应届毕业生就业机会,每年根据应届毕业生的综合素质和学业成绩对学生进行综合评估,已知某年度参与评估的毕业生共有2000名,其评估成绩近似的服从正态分布.现随机抽取了100名毕业生的评估成绩作为样本,并把样本数据进行了分组,绘制了频率分布直方图:

(1)求样本平均数和样本方差(同一组中的数据用该组区间的中点值作代表);

(2)若学校规定评估成绩超过分的毕业生可参加三家公司的面试.

(ⅰ)用样本平均数作为的估计值,用样本标准差作为的估计值,请利用估计值判断这2000名毕业生中,能够参加三家公司面试的人数;

(ⅱ)若三家公司每家都提供甲、乙、丙三个岗位,岗位工资表如下:

公司

甲岗位

乙岗位

丙岗位

9600

6400

5200

9800

7200

5400

10000

6000

5000

李华同学取得了三个公司的面试机会,经过评估,李华在三个公司甲、乙、丙三个岗位的面试成功的概率均为,李华准备依次从三家公司进行面试选岗,公司规定:面试成功必须当场选岗,且只有一次机会.李华在某公司选岗时,若以该岗位工资与未进行面试公司的工资期望作为抉择依据,问李华可以选择公司的哪些岗位?

并说明理由.

附:,若随机变量

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,真命题的个数是(  )

①若“p∨q”为真命题,则“p∧q”为真命题;

②“a∈(0,+∞),函数y=在定义域内单调递增”的否定;

③l为直线,α,β为两个不同的平面,若l⊥β,α⊥β,则l∥α;

④“x∈R,≥0”的否定为“R,<0”.

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥C的底面是正方形,PA⊥平面ABCD,PA=2,∠PDA=45°,点E、F分别为棱AB、PD的中点.

(1)求证:AF∥平面PEC

(2)求证:平面PCD⊥平面PEC;

(3)求三棱锥C-BEP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面ABCD为直角梯形,,侧面底面ABCD

PB的中点为E,求证:平面PCD

,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)求曲线在点处的切线方程;

)当时,求证:函数有且仅有一个零点;

)当时,写出函数的零点的个数.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数 .

(1)讨论函数的单调性;

(2)若函数有两个零点,求的取值范围,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的单调区间;

2)若恒成立,求实数的值.

查看答案和解析>>

同步练习册答案