精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
ex
x2+x+1
-
3e2
49
(e是自然对数的底数),g(x)=ax(a是实数).
(I)求函数f(x)的单调区间;
(Ⅱ)若在[2,+∞)上至少存在一点x0,使得f(x0)<g(x0)成立,求a的取值范围.
(I)∵f(x)=
ex
x2+x+1
-
3e2
49
f′(x)=
ex(x2-x)
(x2+x+1)2

f′(x)=
ex(x2-x)
(x2+x+1)2
>0
,解得x<0或x>1
f′(x)=
ex(x2-x)
(x2+x+1)2
<0
,解得0<x<1
函数f(x)的单调递增区间为:(-∞,0)和(1,+∞)
函数f(x)的单调递减区间为:(0,1)
(Ⅱ)考察反面情况:?x∈[2,+∞),f(x)≥g(x)恒成立
h(x)=
ex
x2+x+1
-
3e2
49
-ax≥0
在x∈[2,+∞)上恒成立
首先h(2)=
e2
7
-
3e2
49
-2a≥0
,即a≤
2e2
49

其次,h′(x)=
ex(x2-x)
(x2+x+1)2
-a
考虑M(x)=
ex(x2-x)
(x2+x+1)2

M′(x)=
ex(x2+x+1)[x3(x-2)+3x2+2x-1]
(x2+x+1)4
>0
在x∈[2,+∞)上恒成立
M(x)≥M(2)=
2e2
49
∴当a≤
2e2
49
时,h′(x)=
ex(x2-x)
(x2+x+1)2
-a≥
2e2
49
-a≥0

∴h(x)在x∈[2,+∞)上递增,又h(2)≥0
h(x)=
ex
x2+x+1
-
3e2
49
-ax≥0
在x∈[2,+∞)上恒成立,故a≤
2e2
49

∴原题的结论为:a>
2e2
49
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
e-x-2,(x≤0)
2ax-1,(x>0)
(a是常数且a>0).对于下列命题:
①函数f(x)的最小值是-1;
②函数f(x)在R上是单调函数;
③若f(x)>0在[
1
2
,+∞)
上恒成立,则a的取值范围是a>1;
④对任意x1<0,x2<0且x1≠x2,恒有f(
x1+x2
2
)<
f(x1)+f(x2)
2

其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e-z+log3
1
x
,若实数x0是方程f(x)=0的解,且x1>x0,则f(x1)的值(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•海淀区一模)已知函数f(x)=e-kx(x2+x-
1k
)(k<0)

(Ⅰ)求f(x)的单调区间;
(Ⅱ)是否存在实数k,使得函数f(x)的极大值等于3e-2?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河南模拟)已知函数f(x)=e-kx(x2+x-
1k
)(k<0)

(Ⅰ)求f(x)的单调区间;
(Ⅱ)是否存在实数k,使得函数f(x)的极大值等于3e-2?若存在,求出k的值;若不存在,请说明理由.
请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•孝感模拟)已知函数
f(x)=
e-x-1,(x≤0)
|lnx|,(x>0)
,集合M={x|f[f(x)]=1},则M中元素的个数为(  )

查看答案和解析>>

同步练习册答案