精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=
3
2
,且过点A(2,0),
(1)求椭圆的方程;
(2)设直线l过点A且与椭圆的另一交点为B,若|AB|=
4
2
5
,求直线l的倾斜角.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(1)由已知得a=2,由e=
c
a
=
3
2
,c=
3
,由此能求出椭圆的方程.
(2)由(Ⅰ)设点B的坐标为(x1,y1),设直线l的方程为y=k(x+2),联立
y=k(x+2)
x2
4
+y2=1
,得(1+4k2)x2+16k2x+(16k2-4)=0,由此能求出直线l的倾斜角.
解答: (1)解:由椭圆过点(2,0)且a>b>0,
所以a=2,由e=
c
a
=
3
2
,c=
3

所以,a2=4,c2=3,b2=1,
所以椭圆的方程为
x2
4
+y2
=1.…(4分)
(2)解:由(Ⅰ)设点B的坐标为(x1,y1),
直线l的斜率为k.则直线l的方程为y=k(x+2).
于是A、B两点的坐标满足方程组
y=k(x+2)
x2
4
+y2=1

消去y并整理,得(1+4k2)x2+16k2x+(16k2-4)=0.…(7分)
由-2x1=
16k2-4
1+4k2
,得x1=
2-8k2
1+4k2

从而y1=
4k
1+4k2

所以|AB|=
(-2-
2-8k2
1+4k2
)2+(
4k
1+4k2
)2
=
4
1+k2
1+4k2
.…(10分)
由|AB|=
4
2
5
,得
4
1+k2
1+4k2
=
4
2
5

整理得32k4-9k2-23=0,
即(k2-1)(32k2+23)=0,解得k=±1.…(11分)
所以直线l的倾斜角为
π
4
4
.…(12分)
点评:本题考查椭圆方程的求法,考查直线与倾斜角的求法,解题时要认真审题,注意函数与方程思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
ax
x2+a
(a≠0)
(1)当a=1时,求f(x)的极值;
(2)若存在x0∈(0,1),使f′(x0)-[f(x0)]2=0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
8
x2+lnx+2,g(x)=x.
(Ⅰ)求函数F(x)=f(x)-2•g(x)的极值点;
(Ⅱ)若函数F(x)=f(x)-2•g(x)在[et,+∞)(t∈Z)上有零点,求t的最大值;
(Ⅲ)若bn=g(n)
1
g(n+1)
(n∈N*),试问数列{bn}中是否存在bn=bm(m≠n)?若存在,求出所有相等的两项;若不存在,请说明理由.(e为自然对数的底数约为2.718).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=m-
2
1+5x

(1)是否存在实数m,使f(x)是奇函数?若存在,求出m的值;若不存在,给出证明.
(2)当-1≤x≤2时,f(x)≥0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-5x+4=0},B={x|(x-3)(x-a)=0,a∈R}.
(1)若a=1,求A∩B、A∪B;
(2)若A∩B≠∅,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
x+1,-1≤x<0
cosx,0≤x<
π
2
的图象与x轴所围成的封闭图形的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别为a,b,c,若B=
π
4
,0<A<
π
2
,且a2,b2,c2成等差数列,则tanA=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(2,3),
b
=(x,-6),若
a
b
,则实数x的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-4x+1在区间(0,1)内恰有一个零点,则a的取值范围是
 

查看答案和解析>>

同步练习册答案