| A. | $\frac{1}{5}$ | B. | $\frac{1}{2}$ | C. | 2 | D. | 5 |
分析 由z=mx+y(m>0),得y=-mx+z,利用z与直线截距之间的关系确定直线的斜率满足的条件即可求出a的值.
解答 解:由z=mx+y(m>0),得y=-mx+z,
∵m>0,∴直线的斜率为-m<0,![]()
作出不等式组对应的平面区域如图:
若-m≥-1,即0<m≤1时,平移直线y=-mx+z,
得直线经过点A时直线截距最大,
由$\left\{\begin{array}{l}{x-y+2=0}\\{x+y-3=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=\frac{3}{2}}\end{array}\right.$,即A($\frac{1}{2}$,$\frac{3}{2}$),
此时$\frac{1}{2}$m+$\frac{3}{2}$=5,得m=7,此时m不成立,
若-m<-1,即m>1时,平移直线y=-mx+z,
得直线经过点C时直线截距最大,
由$\left\{\begin{array}{l}{y=1}\\{x+y-3=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$,即C(2,1),
此时2m+1=5,得m=2,
故选:C
点评 本题主要考查线性规划的应用,根据目标函数的几何意义,讨论m的取值范围是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | -2 | C. | -$\frac{1}{3}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$f($\frac{π}{4}$)>$\sqrt{2}$f($\frac{π}{3}$) | B. | $\sqrt{2}$f($\frac{π}{6}$)>f($\frac{π}{4}$) | C. | f(1)<2f($\frac{π}{6}$)sin1 | D. | $\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a=1,b=0 | B. | a=-1,b=-1 | ||
| C. | a=1,b=0或a=-1,b=-1 | D. | 以上答案均不正确 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com