| A. | a=1,b=0 | B. | a=-1,b=-1 | ||
| C. | a=1,b=0或a=-1,b=-1 | D. | 以上答案均不正确 |
分析 当a>0时,函数在闭区间[1,2]上为增函数,再根据最大值0,最小值-1,求得a和b的值.当a<0时,函数在闭区间[1,2]上为减函数,再根据最大值0,最小值-1,求得a和b的值.
解答 解:函数f(x)=ax2-2ax+b(a≠0)的对称轴方程为x=1,
故当a>0时,函数在闭区间[1,2]上为增函数,
再根据最大值0,最小值-1,可得f(2)=b=0,f(1)=-a+b=-1,求得a=1,b=0.
当a<0时,函数在闭区间[1,2]上为减函数,
再根据最大值0,最小值-1,可得f(2)=b=-1,f(1)=-a+b=0,求得a=-1,b=-1.
故选:C.
点评 本题主要考查求二次函数在闭区间上的最值,二次函数的性质的应用,体现了分类讨论的数学思想,属基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{1}{2}$ | C. | 2 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=x${\;}^{\frac{1}{3}}$ | B. | y=log${\;}_{\frac{1}{3}}$|x| | C. | y=x+$\frac{2}{x}$ | D. | y=2-x-2x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8毫克 | B. | 16毫克 | C. | 32毫克 | D. | 64毫克 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com