精英家教网 > 高中数学 > 题目详情
13.函数f(x)=ax2-2ax+b(a≠0)在闭区间[1,2]上有最大值0,最小值-1,则a,b的值为(  )
A.a=1,b=0B.a=-1,b=-1
C.a=1,b=0或a=-1,b=-1D.以上答案均不正确

分析 当a>0时,函数在闭区间[1,2]上为增函数,再根据最大值0,最小值-1,求得a和b的值.当a<0时,函数在闭区间[1,2]上为减函数,再根据最大值0,最小值-1,求得a和b的值.

解答 解:函数f(x)=ax2-2ax+b(a≠0)的对称轴方程为x=1,
故当a>0时,函数在闭区间[1,2]上为增函数,
再根据最大值0,最小值-1,可得f(2)=b=0,f(1)=-a+b=-1,求得a=1,b=0.
当a<0时,函数在闭区间[1,2]上为减函数,
再根据最大值0,最小值-1,可得f(2)=b=-1,f(1)=-a+b=0,求得a=-1,b=-1.
故选:C.

点评 本题主要考查求二次函数在闭区间上的最值,二次函数的性质的应用,体现了分类讨论的数学思想,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\sqrt{3}$sinxcosx-cos2x+$\frac{1}{2}$(x∈R).
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的对称中心坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.不等式3x+2y-6≥0表示的平面区域是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.实数x,y满足$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-3≤0}\\{y≥1}\end{array}\right.$,若目标函数z=mx+y(m>0)的最大值为5,则m的值为(  )
A.$\frac{1}{5}$B.$\frac{1}{2}$C.2D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数中,既是奇函数又是减函数的是(  )
A.y=x${\;}^{\frac{1}{3}}$B.y=log${\;}_{\frac{1}{3}}$|x|C.y=x+$\frac{2}{x}$D.y=2-x-2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知△ABC中,内角A,B,C所对的边分别为,b,c,且acosC+$\frac{{\sqrt{3}}}{2}$c=b,若a=1,$\sqrt{3}$c-2b=1,则角C为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.对一切正整数n,不等式an+2a<n+1恒成立,则实数a的范围是(-∞,$\frac{2}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.三个数a=0.3-2,b=log20.3,c=20.3之间的大小关系是(  )
A.a<b<cB.b<c<aC.b<a<cD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.碘-131经常被用于对甲状腺的研究,它的半衰期大约是8天(即经过8天的时间,有一半的碘-131会衰变为其他元素).今年10月1日凌晨,在一容器中放入一定量的碘-131,到10月25日凌晨,测得该容器内还剩有2毫克的碘-131,则10月1日凌晨,放人该容器的碘-131的含量是(  )
A.8毫克B.16毫克C.32毫克D.64毫克

查看答案和解析>>

同步练习册答案