精英家教网 > 高中数学 > 题目详情
13.${∫}_{-a}^{a}$x2[f(x)-f(-x)+2]dx=4a.

分析 利用换元法,结合定积分的线性运算法则,即可求出对应的结果.

解答 解:${∫}_{-a}^{a}$x2[f(x)-f(-x)+2]dx=${∫}_{-a}^{a}$x2f(x)dx-${∫}_{-a}^{a}$x2f(-x)dx+${∫}_{-a}^{a}$2dx,
设t=-x,则dt=d(-x),
所以${∫}_{-a}^{a}$x2f(-x)dx=${∫}_{a}^{-a}$t2f(t)(-dt)=${∫}_{-a}^{a}$t2f(t)dt,
所以原式=${∫}_{-a}^{a}$x2f(x)-${∫}_{-a}^{a}$t2f(t)dt+${∫}_{-a}^{a}$2dx=2x${|}_{-a}^{a}$=4a.
故答案为:4a.

点评 本题考查了定积分的计算问题,也考查了换元法与转化思想的应用问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知A、B、C、D为同一平面上的四个点,且满足AB=2,BC=CD=DA=1,∠BAD=θ,△ABD的面积为S,△BCD的面积为T.
(1)当θ=$\frac{π}{3}$时,求T的值;
(2)当S=T时,求cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=alnx+$\frac{1}{2}$x2-(1+a)x.
(1)当a>1时,求函数f(x)的极值;
(2)若f(x)≥0对定义域内的任意x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=ln($\sqrt{1+9{x}^{2}}$-3x)+1,则f(lg2016)+f(lg$\frac{1}{2016}$)=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.把正整数按一定的规则排成了如图所示的三角形数表(每行比上一行多一个数),设aij(i,j∈N+)是位于这个三角形数表中从上往下数第i行、从左往右数第j个数,如a42=8,若aij=2010,则i,j的值的和为(  )
A.75B.76C.77D.78

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=$\sqrt{x+2}$-$\sqrt{1-x}$的值域为[-$\sqrt{3}$,$\sqrt{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图是一几何体的直观图、正视图、侧视图、俯视图.
(1)若F为PD的中点,求证:AF⊥平面PCD;
(2)证明:BD∥平面PEC;
(3)求二面角E-PC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,在四棱锥A-BCDE中,AE⊥平面BCDE,△BCE为正三角形,BD和CE的交点F,恰好平分CE,AE=BE=2,∠CDE=120°,AC=$\frac{\sqrt{2}}{2}$.
(1)证明:平面ABD⊥平面AEC;
(2)求二面角B-CA-E的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2(lnx+lna)(a>0).
(1)当a=1时,设函数g(x)=$\frac{f(x)}{x}$,求函数g(x)的单调区间与极值;
(2)设f′(x)是f(x)的导函数,若$\frac{{{f^'}(x)}}{x^2}$≤1对任意的x>0恒成立,求实数a的取值范围;
(3)若x1,x2∈($\frac{1}{e}$,1),x1+x2<1,求证:x1x2<(x1+x24

查看答案和解析>>

同步练习册答案