分析 (1)由几何体的三视图可知,底面ABCD是边长为4的正方形,推导出PD⊥AF,CD⊥AF.由此能证明AF⊥平面PCD.
(2)以B为原点,BC为x轴,BA为y轴,BE为z轴,建立空间直角坐标系,利用向量法能证明BD∥平面PEC.
(3)求出平面PCD的法向量和平面PEC的法向量,利用向量法能求出二面角E-PC-D的大小.
解答 证明:(1)由几何体的三视图可知,底面ABCD是边长为4的正方形,![]()
PA⊥平面ABCD,PA∥EB,PA=2EB=4.
∵PA=AD,F为PD的中点,∴PD⊥AF.
又∵CD⊥DA,CD⊥PA,∴CD⊥AF.
∵CD∩PD=D,∴AF⊥平面PCD.
(2)以B为原点,BC为x轴,BA为y轴,BE为z轴,建立空间直角坐标系,
B(0,0,0),D(4,4,0),C(4,0,0),E(0,0,2),P(0,4,4),
$\overrightarrow{BD}$=(4,4,0),$\overrightarrow{EC}$=(4,0,-2),$\overrightarrow{EP}$=(0,4,2),
设平面PEC的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{EC}=4x-2z=0}\\{\overrightarrow{n}•\overrightarrow{EP}=4y+2z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,-1,2),
∵$\overrightarrow{BD}•\overrightarrow{n}$=4-4+0=0,BD?平面PEC,
∴BD∥平面PEC.
(3)$\overrightarrow{CP}$=(-4,4,4),$\overrightarrow{CD}$=(0,4,0),
设平面PCD的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{CP}=-4a+4b+4c=0}\\{\overrightarrow{m}•\overrightarrow{CD}=4b=0}\end{array}\right.$,取a=1,得$\overrightarrow{m}$=(1,0,1),
设二面角E-PC-D的大小为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{3}{\sqrt{2}•\sqrt{6}}$=$\frac{\sqrt{3}}{2}$,∴θ=30°,
∴二面角E-PC-D的大小为30°.
点评 本题考查线面平行、线面垂直的证明,考查二面角的大小的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com