精英家教网 > 高中数学 > 题目详情
设a=log20.3,b=20.3,c=0.32,则下列不等式成立的是(  )
A、c<b<a
B、b<a<c
C、a<c<b
D、c<a<b
考点:对数值大小的比较
专题:函数的性质及应用
分析:求出三个数值的范围,即可比较大小.
解答: 解:a=log20.3<0,b=20.3>1,c=0.32∈(0,1).
a,b,c的大小关系是:a<c<b.
故选:C.
点评:本题考查指数与对数值的大小比较,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|x2-1=0},集合B={x|(k+1)x2+(k+2)x+2=0},若集合A与集合B有元素相同,则实数k的取值的集合的子集的个数为(  )
A、2B、4C、8D、16

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=lg(m2-2m-2)+(m2+3m+2)i,根据以下条件分别求实数m的值或范围:
(1)z是纯虚数;
(2)z对应的点在复平面的第二象限.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,为奇函数的是(  )
A、f(x)=x2-2x
B、f(x)=
x
C、f(x)=x-
1
x
D、f(x)=x2+2

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z1=3+4i,z2=1-i,z3=c+(c-2)i(其中i为虚数单位)早复平面内对应的点分别为A,B,C.
(1)若∠BAC是锐角,求实数c的取值范围;
(2)若复数z满足|z-(z1+z2)|=1,求|z|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列各式的值:
(1)(
1
4
-2+(
1
6
6
 
1
3
+
3
+
2
3
-
2
-(1.03)0•(-
6
2

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个集合中,是空集的是(  )
A、{x|x+3=3}
B、{(x,y)|y2=-x2,x,y∈R}
C、{x|x2≤0}
D、{x|x2-x+1=0,x∈R}

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
2-x
+
1
x
的定义域是(  )
A、(-∞,2]
B、(-∞,0)∪(  ),2]
C、(0,2]
D、[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan
α
2
=
1
2
,sin(α+β)=
5
13
,α,β∈(0,π),求cosβ.

查看答案和解析>>

同步练习册答案