精英家教网 > 高中数学 > 题目详情
袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为,现有甲、乙两人从袋中轮流摸取1球.甲先取,乙后取,然后甲再取…取后不放回,每人最多取两次,若两人中有一人首先取到白球时则终止,每个球在每一次被取出的机会是等可能的.
(1)求袋中原有白球的个数;
(2)求甲取到白球的概率;
(3)求取球4次终止的概率.
3,3/5,
(1)设袋中原有个白球,由题意知:,解得
即袋中原有3个白球.…………(4分)
(2)甲只有可能在第1次和第3次取球,记“甲第一次取到白球”的事件为,“第3球取到白球”的事件为,因为事件两两互斥.所以
=.……..8分
(3)因为第四次轮到乙取球,“第四次乙取到白球”的事件为,“第四次乙取不到白球”的事件为,则P=…………12分.
解法二:因为甲乙共取球的次数最多为4次,若四次终止,说明前三次未取到白球,所以
………………………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
某迷宫有三个通道,进入迷宫的每个人都要经过一个智能门,首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止.令表示走出迷宫所需的时间.
(1)求的分布列;
(2)求的数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
从集合的所有非空真子集中等可能地取出一个.
(1)求所取的子集中元素从小到大排列成等比数列的概率;
(2)记所取出的子集的元素个数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)
在盒子里有大小相同,仅颜色不同的乒乓球共10个,其中红球5个,白球3个,蓝球2个.现从中任取出一球确定颜色后放回盒子里,再取下一个球.重复以上操作,最多取3次,过程中如果取出蓝色球则不再取球. 求:
(1)最多取两次就结束的概率;
(2)整个过程中恰好取到2个白球的概率;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)投掷一个质地均匀的、每个面上标有一个数字的正方体玩具,它的六个面中,有两个面标的数字是0,两个面标的数字是2,两个面标的数字是4,将此玩具连续抛掷两次,以两次朝上一面出的数字分别作为点P的横坐标和纵坐标。
(1)求点P落在区域C:内的概率;
(2)若以落在区域C上的所有点为顶点作面积最大的多边形区域M,在区域C上随机撒一粒豆子,求豆子落在区域M上的概率。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛掷一枚质地均匀的骰子所得的样本空间为,令事件的值为 (  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

袋中有3只相同的白球和只相同的黑球,从中任取2只,恰好一白一黑的概率为,则      .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若多项式满足:,则 的值是                                     (  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在10个球中有6个红球和4个白球(各不相同但大小相等),依次不放回地摸出2个球,在第一次摸出红球的条件下,第二次也摸到红球的概率是           

查看答案和解析>>

同步练习册答案