精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=x2-2x+2,x∈A,当A为下列区间时,分别求f(x)的最大值和最小值.
(1)A=[-2,0];
(2)A=[2,3].

分析 配方,利用函数的单调性,即可求f(x)的最大值和最小值.

解答 解:f(x)=x2-2x+2=(x-1)2+1,其对称轴为x=1.
(1)A=[-2,0]为函数的递减区间,
∴f(x)的最小值是2,最大值是10;
(2)A=[2,3]为函数的递增区间,
∴f(x)的最小值是2,最大值是5.

点评 本题考查求f(x)的最大值和最小值,考查函数单调性的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图所示.在△ABC中,已知AB<BC,点I为其内心,M为边AC上的中点,N为外接圆的弧$\widehat{ABC}$的中点.证明:∠IMA=∠INB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某办公室为保障财物安全,需要在春节放假的七天内每天安排一人值班,已知该办公室共有4人,每人需值班一天或两天,则不同的值班安排种数为2520. (用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若cos($\frac{π}{6}$-θ)=$\frac{{\sqrt{3}}}{3}$,则cos($\frac{5π}{6}$+θ)-$\sqrt{3}$cos($\frac{π}{3}$-2θ)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若关于x的不等式4x<log2ax(a>0,且a≠$\frac{1}{2}$)的解集是{x|0<x<$\frac{1}{2}$},则a的取值的集合是$\left\{{\frac{{\sqrt{2}}}{4}}\right\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.复数$\frac{5}{2+i}$的共轭复数是(  )
A.-$\frac{5}{3}-\frac{10}{3}$iB.-$\frac{5}{3}+\frac{10}{3}i$C.2+iD.2-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知等差数列{an},a3=6,a5=10,则S7=(  )
A.60B.56C.40D.36

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若直线ax-by=1(a>0,b>0)过点(1,-1),则$\frac{1}{a}$+$\frac{1}{b}$的最小值为(  )
A.3B.4C.5D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知四面体ABCD,平面ABD⊥平面ABC,AB=5,BC=3,AC=4,DC与平面ABC所成角为$\frac{π}{4}$,则四面体ABCD的体积的最小值为(  )
A.$\frac{12}{5}$B.$\frac{24}{5}$C.$\frac{8}{5}$D.2

查看答案和解析>>

同步练习册答案