【题目】“大数据”时代的到来,人工智能的应用已在各个领域内得到了认可与大力推广,人工智能AI教育也相应在北京、上海等大城市普及、某教育总公司开发了一款专门针对于中小学语数英教学的应用程序,据研究发现,题库总量
(单位:万,
)与成本
(单位:万元)的关系由两部分构成:
①固定成本:总计
万元;
②浮动成本:
万元.
(1)该公司题库总量为多少时,可使得每题的平均成本费用最低?最低费用为多少?
(2)公司将该软件投放市场寻求加盟合作伙伴,加盟费为
万元,加盟人数与题库量满足一次关系
,已知当题库量为
万时,此时加盟人数为
,公司总利润
(单位:万元)达到最大值.试求
、
的值.(注:总利润=加盟费-成本).
科目:高中数学 来源: 题型:
【题目】已知极坐标系的极点与直角坐标系的原点重合,极轴与
轴的非负半轴重合.若曲线
的极坐标方程为
,直线
的参数方程为
(
为参数).
(Ⅰ)求曲线
的直角坐标方程与直线
的普通方程;
(Ⅱ)设点
,直线
与曲线
交于
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一个盒子中有3个球,蓝球、红球、绿球各1个,从中随机地取出一个球,观察其颜色后放回,然后再随机取出1个球.
(1)用适当的符号表示试验的可能结果,写出试验的样本空间;
(2)用集合表示“第一次取出的是红球"的事件;
(3)用集合表示“两次取出的球颜色相同”的事件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱
中,
,
,点
为棱
的中点,点
为线段
上一动点.
![]()
(Ⅰ)求证:当点
为线段
的中点时,
平面
;
(Ⅱ)设
,试问:是否存在实数
,使得平面
与平面
所成锐二面角的余弦值为
?若存在,求出这个实数
;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆的中心在原点,焦点在坐标轴上,焦距为2
.一双曲线和该椭圆有公共焦点,且双曲线的实半轴长比椭圆的长半轴长小4,双曲线离心率与椭圆离心率之比为7∶3,求椭圆和双曲线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
的离心率为
,左顶点到直线
的距离为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线
与椭圆C相交于A、B两点,若以AB为直径的圆经过坐标原点O,试探究:点O到直线AB的距离是否为定值?若是,求出这个定值;否则,请说明理由;
(Ⅲ)在(Ⅱ)的条件下,试求△AOB面积S的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》卷第五《商功》中有记载:“刍甍者,下有袤有广,而上有袤无广.刍,草也.甍,屋盖也.”翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱.刍甍字面意思为茅草屋顶.”现有一个刍甍,如图,四边形
为正方形,四边形
、
为两个全等的等腰梯形,
,
,若这个刍甍的体积为
,则
的长为( )
![]()
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】第二届中国国际进口博览会于2019年11月5日至10日在上海国家会展中心举行,来自151个国家和地区的3617家企业参展,规模和品质均超过首届.更多新产品、新技术、新服务“全球首发,中国首展”,专(业)精(品)尖(端)特(色)产品精华荟萃.某跨国公司带来了高端空调模型参展,通过展会调研,中国甲企业计划在2020年与该跨国公司合资生产此款空调.生产此款空调预计全年需投入固定成本260万元,每生产x千台空调,需另投入资金
万元,且
.经测算生产10千台空调需另投入的资金为4000万元.由调研知,每台空调售价为0.9万元时,当年内生产的空调当年能全部销售完.
(1)求2020年的企业年利润
(万元)关于年产量x(千台)的函数关系式;
(2)2020年产量为多少(千台)时,企业所获年利润最大?最大年利润是多少?注:利润=销售额–成本
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com