分析 由于被积函数含有未知的函数,如果直接用第二类曲线积分的计算方法将会变得很复杂,而如果将积分曲线添加一条线段,使其成封闭曲线,再用格林公式就会变得简单
解答 解:补充线段AB,$\left\{\begin{array}{l}{x=x}\\{y=πx}\end{array}\right.$,x从2到0,则:${∫}_{\;}^{\;}$Lf′(x)sinydx+[f(x)cosy-πx]dy=${∫}_{\;}^{\;}$Lf′(x)sinydx+[f(x)cosy-πx]dy+${∫}_{\;}^{\;}$ABf′(x)sinydx+[f(x)cosy-πx]dy
:${∫}_{\;}^{\;}$BAf′(x)sinydx+[f(x)cosy-πx]dy=I1+I2
其中I1,利用格林公式,设L+BA所围成的区域为D,得
I1=$\underset{∬}{D}$(-π)dxdy=$-\frac{π}{2}$•π•(1+π2)
而I2利用第二曲线积分计算方法,得
I2=${∫}_{0}^{2}$f′(x)sinπx+(f(x)cosπx-πx)•π]dx=${∫}_{0}^{2}$π2xdx=2π2
∴原式=$\frac{3{π}^{2}}{2}$-$\frac{{π}^{4}}{2}$.
点评 本题考查了格林公式及其应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 25 | B. | -2 | C. | 2 | D. | -25 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com