精英家教网 > 高中数学 > 题目详情
15.计算:${∫}_{\;}^{\;}$Lf′(x)sinydx+[f(x)cosy-πx]dy,其中f′(x)连续,L为从点A(2,2π)沿圆周(x-1)2+(y-π)2=1+π2按逆时针方向到O(0,0).

分析 由于被积函数含有未知的函数,如果直接用第二类曲线积分的计算方法将会变得很复杂,而如果将积分曲线添加一条线段,使其成封闭曲线,再用格林公式就会变得简单

解答 解:补充线段AB,$\left\{\begin{array}{l}{x=x}\\{y=πx}\end{array}\right.$,x从2到0,则:${∫}_{\;}^{\;}$Lf′(x)sinydx+[f(x)cosy-πx]dy=${∫}_{\;}^{\;}$Lf′(x)sinydx+[f(x)cosy-πx]dy+${∫}_{\;}^{\;}$ABf′(x)sinydx+[f(x)cosy-πx]dy
:${∫}_{\;}^{\;}$BAf′(x)sinydx+[f(x)cosy-πx]dy=I1+I2
其中I1,利用格林公式,设L+BA所围成的区域为D,得
I1=$\underset{∬}{D}$(-π)dxdy=$-\frac{π}{2}$•π•(1+π2)
而I2利用第二曲线积分计算方法,得
I2=${∫}_{0}^{2}$f′(x)sinπx+(f(x)cosπx-πx)•π]dx=${∫}_{0}^{2}$π2xdx=2π2
∴原式=$\frac{3{π}^{2}}{2}$-$\frac{{π}^{4}}{2}$.

点评 本题考查了格林公式及其应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),且当x∈[0,1]时,有f(x)=3x-1,则f(2015)的值等于(  )
A.25B.-2C.2D.-25

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设集合M={x|x2-1>0},集合N={y|y<3,y∈N*},则M∩N={2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$\left\{\begin{array}{l}{mn≥1}\\{|m+n|≤2}\end{array}\right.$,求y=$\frac{1}{m}+\frac{1}{n}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}是递增等比数列,且a1,a3是方程x2-10x+16=0的两根.
(1)求数列{an}的通项公式;
(2)若数列bn=2log2an-1,记数列$\{\frac{2}{{{b_n}{b_{n+1}}}}\}$的前n项和为Sn,求使Sn>$\frac{5}{6}$成立的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(Ⅰ)如图1所示,已知圆C:(x+1)2+y2=8,定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足$\overrightarrow{AM}$=2$\overrightarrow{AP}$,$\overrightarrow{NP}$•$\overrightarrow{AM}$=0的轨迹为曲线E.求曲线E的方程.
(Ⅱ)如图2所示,已知圆 E:x2+(y-$\frac{1}{2}$)2=$\frac{9}{4}$经过椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点F1、F2,且与椭圆C在第一象限的交点为 A,且F1,E,A三点共线. 求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.复数$\frac{1-7i}{1+i}$的虚部为(  )
A.4iB.-4iC.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在一个边长为1000m的正方形野生麋鹿保护区的正中央,有一个半径为30m的圆形水塘,里面饲养者鳄鱼,以提高麋鹿的抗天敌能力.
(1)刚投放进去的麋鹿都是在水塘以外的任意区域自由活动,若岸上距离水塘边1m以内的范围都是鳄鱼的攻击区域,请判断麋鹿受到鳄鱼攻击的可能性是否会超过1‰,并说明理由;
(2)现有甲、乙两种类型的麋鹿,按野生麋鹿活动的规律,它们活动的适宜范围平均每只分别不小于8000m2和4500m2(水塘的面积忽略不计),它们每只每年对食物的需求量分别是4个单位和5个单位,岸上植物每年提供的食物总量是720个单位,若甲、乙两种麋鹿每只的科研价值比为3:2,要使得两种麋鹿的科研总价值最大,保护区应投放两种 麋鹿个多少只.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知Sn,Tn分别为等差数列{an},{bn}的前n项和且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{3n-1}{4n+1}$,则$\frac{{a}_{5}}{{b}_{5}}$=$\frac{26}{35}$.

查看答案和解析>>

同步练习册答案