精英家教网 > 高中数学 > 题目详情
已知:△ABC是正三角形,EA、CD垂直平面ABC,且EA=AB=2,DC=1,F是BE中点.求证:(1)FD∥平面ABC;
(2)AF⊥平面BDE.
考点:直线与平面垂直的判定,直线与平面平行的判定
专题:空间位置关系与距离
分析:(1)过F作FO∥EA,只要证明FD∥CO即可;
(2)因为AE⊥平面ABC,AE?平面AEB,得到平面AEB⊥平面ABC,再由面面垂直的性质得到OC⊥平面ABE,进一步得到AF⊥OC,由线面垂直的判定定理可证.
解答: 证明:(1)过F作FO∥EA,因为F是EB的中点,所以O是AB的中点,所以FO∥CD,FO=CD,
所以四边形FOCD是平行四边形,所以FD∥CO,又FD?平面ABC,CO?平面ABC,
所以FD∥平面ABC;
(2)∵AE⊥平面ABC,AE?平面AEB,
∴平面AEB⊥平面ABC,
又平面AEB∩平面ABC=AB,OC⊥AB,
∴OC⊥平面ABE,AF?平面ABE,
∴AF⊥OC,DF∥OC
∴AF⊥DF又AF⊥BE,
∴AF⊥平面BDE.
点评:本题考查了线面平行的判定和线面垂直的判定,关键是熟练相关的判定定理和性质定理,将线面关系转化为线线关系解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD的底边长与侧棱的长度都是4,ABCD是正方形.
(1)求该四棱锥的高,表面积;
(2)若M为棱锥的高PO的中点,过点M作平行于棱锥底面的截面,求截得的棱台的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

轮船A和轮船B在某日中午12时离开海港C,两艘轮船的航行方向之间的夹角为120°,轮船A的航行速度是25/h,轮船B的航行速度是15n mile/h,则该日下午2时A、B两船之间的距离是(  )
A、35 n mile
B、5
19
n mile
C、70 n mile
D、10
19
n mile

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-
1
x
-alnx
(1)讨论f(x)的单调性;
(2)若f(x)有两个极值点x1,x2,过A(x1,f(x1)),B(x2,f(x2))的直线斜率为k=2-a能否成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知BC=DC=AB=AD=
2
,BD=2,平面ABD⊥平面BCD,O为BD中点,点P,Q分别为线段AO,BC上的动点(不含端点),且AP=CQ,则三棱锥P-QCO体积的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在底面为平行四边形的四棱锥P-ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=2AB=2,E是线段PD上的点.
(1)若PB∥平面AEC,试确定点E在线段PD上的位置;
(2)若二面角E-AC-D的大小为45°,求PE:PD的值;
(3)在(2)的条件下,设点D在平面AEC上的射影为点Q,求点Q到直线AC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

当函数y=cos(2x+
π
3
)+2取最大值时,x=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C顶点在原点,焦点F在x轴上,抛物线C上的点(1,m)到F的距离等于2.
(1)求抛物线C的方程;
(2)若不与x轴垂直的直线l1与抛物线C交于A、B两点,且线段AB的垂直平分线l2恰好过点M(4,0),求证:线段AB中点的横坐标为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.已知直线l的参数方程为
x=5+at
y=-1-t
(t为参数),圆C的极坐标方程为ρ=2
2
cos(θ-
π
4
).若圆C关于直线l对称,则a的值为
 

查看答案和解析>>

同步练习册答案