精英家教网 > 高中数学 > 题目详情
轮船A和轮船B在某日中午12时离开海港C,两艘轮船的航行方向之间的夹角为120°,轮船A的航行速度是25/h,轮船B的航行速度是15n mile/h,则该日下午2时A、B两船之间的距离是(  )
A、35 n mile
B、5
19
n mile
C、70 n mile
D、10
19
n mile
考点:解三角形的实际应用
专题:应用题,解三角形
分析:根据题中已知条件先找出下午2时时两轮船与港口O的距离,然后利用三角形余弦定理便可求出两轮船之间的距离AB.
解答: 解:如图,∵轮船走了两个小时,
∴OA=50,OB=30.
∵由余弦定理可得AB2=OA2+OB2-2OA•OBcos120°
=502+302-2×50×30×(-
1
2

=2500+900+1500=4900
∴AB=70海里.
故选:C
点评:本题主要考查了三角形的实际应用和余弦定理,解题时要认真阅读题意,以免出现不必要的错误,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

执行如图的程序框图,如果输入x,y∈R,那么输出的S的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x),g(x)满足关系g(x)=f(x)•f(x+α),其中α是常数.
(1)设f(x)=cosx+sinx,α=
π
2
,求g(x)的解析式;
(2)设计一个函数f(x)及一个α的值,使得g(x)=2xosx(cosx+
3
sinx);
(3)a,b,c分别为△ABC的三个内角A,B,C对应的边长,a=2,若g(x)=2cosx(cosx+
3
sinx),且x=
A
2
时g(x)取得最大值,求当g(x)取得最大值时b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在R上的偶函数f(x),当x≥0时有f(x+2)=f(x),且x∈[0,2)时,f(x)=2x-1,则f(2014)+f(-2015)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设正方体的棱长为2,一个球内切于该正方体,那么这个球的体积是(  )
A、
6
π
B、
32
3
π
C、
8
3
π
D、
4
3
π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下面各数列{an}的前n项和Sn的公式,且 Sn=3n-2.则数列{an}的通项公式是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a为实数,两直线l1:ax+y+1=0,l2:x+y-a=0相交于一点,求证:交点不可能在第一象限及x轴上.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:△ABC是正三角形,EA、CD垂直平面ABC,且EA=AB=2,DC=1,F是BE中点.求证:(1)FD∥平面ABC;
(2)AF⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于下列命题:
①函数y=tanx在第一象限是增函数;
②函数y=cos2(
π
4
-x)是奇函数;
③函数y=sin2x-2sinx的值域是[-1,+∞);
④函数y=sin(
π
4
-2x)在(kπ+
8
,kπ+
8
),k∈Z上是增函数;
⑤设函数f(x)=
(
1
2
)x,x≤0
x
1
2
,x>0
,若f(x0)>2,则x0的取值范围是(-∞,-1)∪(4,+∞).
写出所有正确的命题的题号
 

查看答案和解析>>

同步练习册答案