精英家教网 > 高中数学 > 题目详情
设函数,其中b≠0.
(1)当b>时,判断函数在定义域上的单调性:
(2)求函数的极值点.
(1)单调递增,(2)时,有唯一的极小值点
时,有一个极大值点和一个极小值点
时,函数上无极值点.

试题分析:(1)利用导数研究函数单调性,有四步.一是求出函数定义域:,二是求出函数导数,三是根据定义域及参数b>,确定导函数的符号,即根据四写出结论:当时,函数在定义域上单调递增(2)求函数极值点,也是分四步.一是求出函数定义域:,二是求出函数导数,三是根据定义域及参数b取值范围,讨论导函数的符号,四是关键导函数符号变化规律得出相应结论.
试题解析:函数的定义域为              2
                    4
,则上递增,在上递减,
.当时,
上恒成立.
即当时,函数在定义域上单调递增           6
(2)分以下几种情形讨论:(1)由(1)知当时函数无极值点.
(2)当时,时,
时,时,函数上无极值点   8
(3)当时,解得两个不同解
时,

此时上有唯一的极小值点          10
时,
都大于0 ,上小于0 ,
此时有一个极大值点和一个极小值点
综上可知,时,上有唯一的极小值点
时,有一个极大值点和一个极小值点
时,函数上无极值点.            13
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若,求函数的极小值;
(2)设函数,试问:在定义域内是否存在三个不同的自变量使得的值相等,若存在,请求出的范围,若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)若函数在点处的切线方程为,求的值;
(2)若,函数在区间内有唯一零点,求的取值范围;
(3)若对任意的,均有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

二次函数,它的导函数的图象与直线平行.
(1)求的解析式;
(2)若函数的图象与直线有三个公共点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中ma均为实数.
(1)求的极值;
(2)设,若对任意的恒成立,求的最小值;
(3)设,若对任意给定的,在区间上总存在,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=2ax--(2+a)lnx(a≥0).
(1)当a=0时,求f(x)的极值;
(2)当a>0时,讨论f(x)的单调性;
(3)若对任意的a∈(2,3),x­1,x2∈[1,3],恒有(m-ln3)a-2ln3>|f(x1)-f(x­2)|成立,求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=xlnx,g(x)=-x2+ax-3.
(1)求函数f(x)在[t,t+2](t>0)上的最小值;
(2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;
(3)证明对一切x∈(0,+∞),都有lnx>成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数内有极小值,则
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数在区间上的值域为(    )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案