【题目】某校
名学生参加军事冬令营活动,活动期间各自扮演一名角色进行分组游戏,角色按级别从小到大共
种,分别为士兵、排长、连长、营长、团长、旅长、师长、军长和司令.游戏分组有两种方式,可以
人一组或者
人一组.如果
人一组,则必须角色相同;如果
人一组,则
人角色相同或者
人为级别连续的
个不同角色.已知这
名学生扮演的角色有
名士兵和
名司令,其余角色各
人,现在新加入
名学生,将这
名学生分成
组进行游戏,则新加入的学生可以扮演的角色的种数为________.
【答案】![]()
【解析】
对新加入的学生所扮演的角色进行分类讨论,分析各种情况下
个学生所扮演的角色的分组,综合可得出结论.
依题意,
名学生分成
组,则一定是
个
人组和
个
人组.
①若新加入的学生是士兵,则可以将这
个人分组如下;
名士兵;士兵、排长、连长各
名;营长、团长、旅长各
名;师长、军长、司令各
名;
名司令.所以新加入的学生可以是士兵,由对称性可知也可以是司令;
②若新加入的学生是排长,则可以将这
个人分组如下:
名士兵;连长、营长、团长各
名;旅长、师长、军长各
名;
名司令;
名排长.所以新加入的学生可以是排长,由对称性可知也可以是军长;
③若新加入的学生是连长,则可以将这
个人分组如下:
名士兵;士兵、排长、连长各
名;连长、营长、团长各
名;旅长、师长、军长各
名;
名司令.所以新加入的学生可以是连长,由对称性可知也可以是师长;
④若新加入的学生是营长,则可以将这
个人分组如下:
名士兵;排长、连长、营长各
名;营长、团长、旅长各
名;师长、军长、司令各
名;
名司令.所以新加入的学生可以是营长,由对称性可知也可以是旅长;
⑤若新加入的学生是团长,则可以将这
个人分组如下:
名士兵;排长、连长、营长各
名;旅长、师长、军长各
名;
名司令;
名团长.所以新加入的学生可以是团长.
综上所述,新加入学生可以扮演
种角色.
故答案为:
.
科目:高中数学 来源: 题型:
【题目】某种设备随着使用年限的增加,每年的维护费相应增加现对一批该设备进行调查,得到这批设备自购入使用之日起,前5年平均每台设备每年的维护费用大致如下表:
年份 | 1 | 2 | 3 | 4 | 5 |
维护费 | 1.1 | 1.6 | 2 | 2.5 | 2.8 |
(1)在这5年中随机抽取两年,求平均每台设备每年的维护费用至少有1年多于2万元的概率;
(2)求
关于
的线性回归方程.若该设备的价格是每台16万元,你认为应该使用满五年换一次设备,还是应该使用满八年换一次设备?请说明理由.
参考公式:用最小二乘法求线性回归方程
的系数公式
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加,下表是某购物网站
年
月促销费用
(万元)和产品销量
(万件)的具体数据.
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
促销费用 | 2 | 3 | 6 | 10 | 13 | 21 | 15 | 18 |
产品销量 | 1 | 1 | 2 | 3 | 3.5 | 5 | 4 | 4.5 |
(1)根据数据可知
与
具有线性相关关系,请建立
关于
的回归方程
(系数精确到
);
(2)已知
月份该购物网站为庆祝成立
周年,特定制奖励制度:用
(单位:件)表示日销量,若
,则每位员工每日奖励
元;若
,每位员工每日奖励
元;若
,则每位员工每日奖励
元.现已知该网站
月份日销量
服从正态分布
,请你计算某位员工当月奖励金额总数大约为多少元.(当月奖励金额总数精确到百分位)
参考数据:
,
,其中
分别为第
个月的促销费用和产品销量,
.
参考公式:①对于一组数据
,其回归方程
的斜率和截距的最小二乘估计分别为
,
.
②若随机变量
服从正态分布
,则
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线的参数方程为
(
为参数).以原点为极点,轴正半轴为极轴建立极坐标系,曲线极坐标方程为
,直线与曲线交于、两点.
(1)求直线的普通方程以及曲线的直角坐标方程;
(2)若直线上有定点
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=C1C=1,M,N分别是AB,A1C的中点.
![]()
(1)求证:直线MN⊥平面ACB1;
(2)求点C1到平面B1MC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为迎接2022年北京冬季奥运会,普及冬奥知识,某校开展了“冰雪答题王”冬奥知识竞赛活动.现从参加冬奥知识竞赛活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:
,
,
,
,
,
,得到如图所示的频率分布直方图.
![]()
(1)求
的值;
(2)估计这100名学生的平均成绩(同一组中的数据用该组区间的中点值为代表);
(3)在抽取的100名学生中,规定:比赛成绩不低于80分为“优秀”,比赛成绩低于80分为“非优秀”.请将下面的2×2列联表补充完整,并判断是否有99.9%的把握认为“比赛成绩是否优秀与性别有关”?
优秀 | 非优秀 | 合计 | |
男生 | 40 | ||
女生 | 50 | ||
合计 | 100 |
参考公式及数据:![]()
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com