精英家教网 > 高中数学 > 题目详情
tan20°+4sin20°的值为(  )
分析:首先利用弦切互化公式及正弦的倍角公式对原式进行变形,再两次运用和差化积公式,同时结合正余弦互化公式,转化为特殊角的三角函数值,则问题解决.
解答:解:tan20°+4sin20°
=
sin20°+4sin20°cos20°
cos20°

=
sin20°+2sin40°
cos20°

=
(sin20°+sin40°)+sin40°
cos20°

=
2sin30°cos10°+sin40°
cos20°

=
cos10°+sin40°
cos20°

=
sin80°+sin40°
cos20°

=
2sin60°cos20°
cos20°

=2sin60°=
3

故选B.
点评:本题考查三角函数的化简求值,解决本题要注意两点,一是函数名的变化(切化弦),二是如何将已知角用特殊角表示.考查转化思想,计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=4sin2(
π
4
+x)-2
3
cos2x-1
,且给定条件p:“
π
4
≤x≤
π
2
”,
(1)求f(x)的最大值及最小值
(2)若又给条件q:“|f(x)-m|<2“且p是q的充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=4sin2(x+
π
4
)+4
3
sin2x-(1+2
3
),x∈R.
(1)求函数f(x)的最小正周期和图象的对称中心;
(2)求函数f(x)在区间[
π
4
π
2
]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

tan10°tan20°+
3
(tan10°+tan20)
的值是(  )
A、
3
B、1
C、
3
3
D、
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0<α<
π
2
1
cos2α
+
4
sin2α
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区一模)设复数z=(a2-4sin2θ)+(1+2cosθ)i,其中i为虚数单位,a为实数,θ∈(0,π).若z是方程x2-2x+5=0的一个根,且z在复平面内所对应的点在第一象限,求θ与a的值.

查看答案和解析>>

同步练习册答案