如图,已知直三棱柱ABC-A1B1C1中,AC⊥BC,D为AB的中点,AC=BC=BB1.
求证:(1)BC1⊥AB1.
(2)BC1∥平面CA1D.
见解析
【解析】【证明】如图,以C1点为原点,C1A1,C1B1,C1C所在直线分别为x轴、y轴、z轴建立空间直角坐标系.
设AC=BC=BB1=2,
则A(2,0,2),B(0,2,2),C(0,0,2),A1(2,0,0),B1(0,2,0),
C1(0,0,0),D(1,1,2).
(1)由于=(0,-2,-2),
=(-2,2,-2),
所以·=0-4+4=0,
因此⊥,
故BC1⊥AB1.
(2)取A1C的中点E,连接DE,由于E(1,0,1),
所以=(0,1,1).
又=(0,-2,-2),
所以=-.
又ED和BC1不共线,所以ED∥BC1.
又DE?平面CA1D,BC1?平面CA1D,
故BC1∥平面CA1D.
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业(三)第一章第三节练习卷(解析版) 题型:选择题
已知命题
p1:函数y=2x-2-x在R上为增函数,
p2:函数y=2x+2-x在R上为减函数,
则在命题q1:p1∨p2,q2:p1∧p2,q3:(p1)∨p2和q4:p1∧(p2)中,真命题是( )
(A)q1,q3 (B)q2,q3 (C)q1,q4 (D)q2,q4
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十四第七章第三节练习卷(解析版) 题型:选择题
如图,正三棱柱ABC-A1B1C1的各棱长(包括底面边长)都是2,E,F分别是AB,A1C1的中点,则EF与侧棱C1C所成的角的余弦值是( )
(A) (B) (C) (D)2
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十六第七章第五节练习卷(解析版) 题型:填空题
如图,正方形BCDE的边长为a,已知AB=BC,将直角△ABE沿BE边折起,A点在平面BCDE上的射影为D点,则对翻折后的几何体有如下描述:
(1)AB与DE所成角的正切值是.
(2)三棱锥B-ACE的体积是a3.
(3)AB∥CD.
(4)平面EAB⊥平面ADE.
其中正确的叙述有 (写出所有正确结论的编号).
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十六第七章第五节练习卷(解析版) 题型:选择题
对于直线m,n和平面α,β,α⊥β的一个充分条件是( )
(A)m⊥n,m∥α,n∥β (B)m⊥n,α∩β=m,n?α
(C)m∥n,n⊥β,m?α (D)m∥n,m⊥α,n⊥β
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十八第七章第七节练习卷(解析版) 题型:选择题
已知非零向量a,b及平面α,若向量a是平面α的法向量,则a·b=0是向量b所在直线平行于平面α或在平面α内的( )
(A)充分不必要条件 (B)必要不充分条件
(C)充要条件 (D)既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十五第七章第四节练习卷(解析版) 题型:解答题
如图所示,在棱长为1的正方体ABCD-A1B1C1D1中,点M在AD1上移动,点N在BD上移动,D1M=DN=a(0<a<),连接MN.
(1)证明对任意a∈(0,),总有MN∥平面DCC1D1.
(2)当a为何值时,MN的长最小?
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十二第七章第一节练习卷(解析版) 题型:解答题
已知正三棱锥V-ABC的正视图、侧视图和俯视图如图所示.
(1)画出该三棱锥的直观图.
(2)求出侧视图的面积.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十三第七章第二节练习卷(解析版) 题型:选择题
如图是某几何体的三视图,其中正视图和侧视图是半径为1的半圆,俯视图是个圆,则该几何体的全面积是( )
(A)π (B)2π (C)3π (D)4π
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com