精英家教网 > 高中数学 > 题目详情
已知直线和平面,若,过点且平行于的直线(   )
A.只有一条,不在平面B.有无数条,一定在平面
C.只有一条,且在平面D.有无数条,不一定在平面
C

试题分析:用反证法证明,由线面平行的性质定理可知,经过直线与点的平面与平面的交线必与直线平行.若还存在经过点的另一条直线使得,则,又直线均经过点,则此情形不可能成立,所以在平面内过点只有唯一的一条直线与直线平行.选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知长方体,点的中点.

(1)求证:
(2)若,试问在线段上是否存在点使得,若存在求出,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,侧面是边长为2的正三角形,且与底面垂直,底面的菱形,的中点.

(Ⅰ)求与底面所成角的大小;
(Ⅱ)求证:平面;(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图在正三棱锥P-ABC中,侧棱长为3,底面边长为2,E为BC的中点,

(1)求证:BC⊥PA
(2)求点C到平面PAB的距离

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,⊥面,为线段上的点.

(Ⅰ)证明:⊥面 ;
(Ⅱ)若的中点,求所成的角的正切值;
(Ⅲ)若满足⊥面,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥S-ABCD中,SD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=SD=2,E为棱SB上任一点.

(Ⅰ)求证:无论E点取在何处恒有
(Ⅱ)设,当平面EDC平面SBC时,求的值;
(Ⅲ)在(Ⅱ)的条件下求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:四边形是梯形,,,三角形是等边三角形,且平面 平面,

(1)求证:平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是两个不同的平面.下列四个命题中,正确的是(    )
A.,,则
B.,则
C.,,则
D.,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一条线段夹在一个直二面角的两个半平面内,它与两个半平面所成的角都是,则这条线段与这个二面角的棱所成角的大小为          

查看答案和解析>>

同步练习册答案