精英家教网 > 高中数学 > 题目详情
如图在正三棱锥P-ABC中,侧棱长为3,底面边长为2,E为BC的中点,

(1)求证:BC⊥PA
(2)求点C到平面PAB的距离
(1)详见解析;(2)

试题分析:(1)解题思路证线面垂直得线线垂直,详见解析。(2)过点P做面ABC的垂线,垂足为O,因为三棱锥P-ABC为正三棱锥,则点O为底面三角形的中心。则,在直角三角形POA中求PO,PO即为三棱锥P-ABC的高,可求得三棱锥体积为。又因为三角形PAB各边长已知可求其面积,设出点C到面PAB的距离h,也可表示出三棱锥的体积,根据体积相等即,可求出h。

试题解析:证明(1)E为BC的中点,又为正三棱锥
 因为,所以BC⊥PA
(2)设点C到平面PAB的距离为

         10分
              12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱中,平面分别是的中点.

(Ⅰ)求证:∥平面
(Ⅱ)求证:平面平面
(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱(侧棱和底面垂直的棱柱)中,平面侧面,,且满足.

(1)求证:
(2)求点的距离;
(3)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中,是棱上的一点,的延长线与的延长线的交点,且∥平面

(1)求证:
(2)求二面角的平面角的余弦值;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥底面是平行四边形,面,,,分别为的中点.

(1)求证:
(2)求证:
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m,n是两条不同直线,是两个不同的平面,下列命题正确的是(   )
A.B.,则
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线和平面,若,过点且平行于的直线(   )
A.只有一条,不在平面B.有无数条,一定在平面
C.只有一条,且在平面D.有无数条,不一定在平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是异面直线,直线∥直线,那么(  )
A.一定是异面直线B.一定是相交直线
C.不可能是平行直线D.不可能是相交直线

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,直线平面,垂足为,直线是平面的一条斜线,斜足为,其中,过点的动直线交平面于点,则下列说法正确的是___________.

①若,则动点B的轨迹是一个圆;
②若,则动点B的轨迹是一条直线;
③若,则动点B的轨迹是抛物线;
,则动点B的轨迹是椭圆;
,则动点B的轨迹是双曲线.

查看答案和解析>>

同步练习册答案