精英家教网 > 高中数学 > 题目详情
如图,直线平面,垂足为,直线是平面的一条斜线,斜足为,其中,过点的动直线交平面于点,则下列说法正确的是___________.

①若,则动点B的轨迹是一个圆;
②若,则动点B的轨迹是一条直线;
③若,则动点B的轨迹是抛物线;
,则动点B的轨迹是椭圆;
,则动点B的轨迹是双曲线.
②③.

试题分析:由①重合,动直线形成一个平面与平面M的平面,动点的轨迹不存在,故不正确;由②,则,所以动直线形成一个平面垂直,平面与平面M交于一条直线,则是动点的轨迹,故正确;由③,则动直线形成一个以为轴线的圆锥,圆锥母线与轴线的夹角是,由,则圆锥的一条母线与平面M平行,所以动点的轨迹看成一个平行于圆锥母线的平面截圆锥所成的图形是抛物线,则动点B的轨迹是抛物线,故正确;由④时,动点的轨迹看成一个与圆锥母线成一个角度的平面截圆锥所成的图形,此时的轨迹是双曲线;由⑤动点的轨迹看成一个与圆锥母线成一个角度的平面截圆锥所成的图形,此时的轨迹是椭圆.故最终正确的是②③.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图在正三棱锥P-ABC中,侧棱长为3,底面边长为2,E为BC的中点,

(1)求证:BC⊥PA
(2)求点C到平面PAB的距离

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥P-ABCD的底面为直角梯形,AD∥BC,∠BCD=900,PA=PB,PC=PD.

(I) 试判断直线CD与平面PAD是否垂直,并简述理由;
(II)求证:平面PAB⊥平面ABCD;
(III)如果CD=AD+BC,二面角P-CB-A等于600,求二面角P-CD-A的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,在直角梯形中,. 把沿对角线折起到的位置,如图2所示,使得点在平面上的正投影恰好落在线段上,连接,点分别为线段的中点.

(1)求证:平面平面
(2)求直线与平面所成角的正弦值;
(3)在棱上是否存在一点,使得到点四点的距离相等?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:四边形是梯形,,,三角形是等边三角形,且平面 平面,

(1)求证:平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四面体中,分别是的中点,

(Ⅰ)求证:平面
(Ⅱ)求二面角的正切值;
(Ⅲ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中,

(Ⅰ)求证:平面
(Ⅱ)若的中点,求与平面所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中,为的中点.

(1)求证:∥平面
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(如图,在四棱锥P﹣ABCD中,底面是边长为2的菱形,∠BAD=60°,对角线AC与BD相交于点O,PO为四棱锥P﹣ABCD的高,且,E、F分别是BC、AP的中点.

(1)求证:EF∥平面PCD;
(2)求三棱锥F﹣PCD的体积.

查看答案和解析>>

同步练习册答案