精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱中,为的中点.

(1)求证:∥平面
(2)求证:平面
(1)证明见解析;(2)证明见解析.

试题分析:(1)连接相交于,即可证明平面;
(2)根据线面垂直的判定定理即可证明平面
试题解析:(1)证明:如图,连接相交于
的中点
连结,则的中点
所以,
平面
所以,平面
(2)因为,所以四边形为正方形,所有
又因为平面
所以
所以平面
所以
又在直棱柱
所以平面
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

四棱锥底面是平行四边形,面,,,分别为的中点.

(1)求证:
(2)求证:
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,侧面与底面垂直, 分别是的中点,,,.

(Ⅰ)求证:平面;
(Ⅱ)若点为线段的中点,求异面直线所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面为菱形,的中点.

(1)若,求证:平面平面
(2)点在线段上,,试确定的值,使平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是正方形,,点在棱上.

(1)求证:平面平面
(2)当,且时,确定点的位置,即求出的值.
(3)在(2)的条件下若F是PD的靠近P的一个三等分点,求二面角A-EF-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知如图,平行四边形中,,正方形所在平面与平面垂直,分别是的中点。

⑴求证:平面
⑵求平面与平面所成的二面角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,直线平面,垂足为,直线是平面的一条斜线,斜足为,其中,过点的动直线交平面于点,则下列说法正确的是___________.

①若,则动点B的轨迹是一个圆;
②若,则动点B的轨迹是一条直线;
③若,则动点B的轨迹是抛物线;
,则动点B的轨迹是椭圆;
,则动点B的轨迹是双曲线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在底面为正方形的长方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是            (写出所有正确结论的编号)
①矩形;②不是矩形的平行四边形;③有三个面为直角三角形,有一个面为等腰三角形的四面体;④每个面都是等腰三角形的四面体;⑤每个面都是直角三角形的四面体.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知m,n是两条不同的直线,α,β是两个不同的平面,有下列四个命题:
①若m∥n,n?α,则m∥α;
②若m⊥n,m⊥α,nα,则n∥α;
③若α⊥β,m⊥α,n⊥β,则m⊥n;
④若m,n是异面直线,m?α,n?β,m∥β,则n∥α.
其中正确的命题有(  )
A.①②B.②③C.③④D.②④

查看答案和解析>>

同步练习册答案