精英家教网 > 高中数学 > 题目详情
如图,在四棱锥中,底面为菱形,的中点.

(1)若,求证:平面平面
(2)点在线段上,,试确定的值,使平面.
(1)详见解析;(2).

试题分析:(1)要证平面平面,需要证明平面,只需证明
均成立;(2)探索性问题,要点在线段上,当平面
需要求出,只需证明,即证明,需证,而∥平面是已知条件,显然成立.
试题解析:(1)连四边形为菱形,
 , 为正三角形,的中点,
 ,                                                 3分
,的中点,
平面平面
平面平面.                                        6分
(2)当时,∥平面
证明:若∥平面,连
可得,,    ,      9分
∥平面,平面,平面平面,
, ,即:.        13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面为直角梯形,垂直于底面分别为的中点.

(1)求证:
(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四面体中,分别是的中点,

(Ⅰ)求证:平面
(Ⅱ)求二面角的正切值;
(Ⅲ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

右图是一个直三棱柱(以为底面)被一平面所截得到的几何体,截面为.已知

(1)设点的中点,证明:平面
(2)求二面角的大小;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中,为的中点.

(1)求证:∥平面
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的几何体中,四边形是菱形,是矩形,平面⊥平面的中点.

(Ⅰ)求证://平面
(Ⅱ)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中,的中点,分别在线段上的动点,且,把沿折起,如下图所示,

(Ⅰ)求证:平面
(Ⅱ)当二面角为直二面角时,是否存在点,使得直线与平面所成的角为,若存在求的长,若不存在说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

,平面⊥平面是线段上一点,

(Ⅰ)证明:⊥平面
(Ⅱ)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于空间的两条直线和一个平面,下列命题中的真命题是( )
A.若,则B.若 ,则
C.若,则D.若,则

查看答案和解析>>

同步练习册答案