精英家教网 > 高中数学 > 题目详情
右图是一个直三棱柱(以为底面)被一平面所截得到的几何体,截面为.已知

(1)设点的中点,证明:平面
(2)求二面角的大小;
(1)证明见试题解析;(2).

试题分析:(1)证线面平行,一般根据线面平行的判定定理,在平面内找到一条与平行的直线即可.为此我们取中点D,证明// .(2)要求二面角的大小,一般是先作出二面角的平面角,通过求这个平面角来求出二面角.由于该几何体的三个侧面都是直角梯形,易计算得,从而,所以。那么二面角的平面角可以直接在平面内过点,或者作平面,垂足为,连接,由三垂线定理知就是所作平面角。
试题解析:(1)证明:作,连

因为的中点,
所以
是平行四边形,因此有
平面平面

(2)如图,过作截面,分别交

,连
因为,所以,则平面
又因为
所以,根据三垂线定理知,所以就是所求二面角的平面角.
因为,所以,故
即:所求二面角的大小为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱柱中,已知平面平面,.

(1)求证:
(2)若为棱的中点,求证:平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥E—ABCD中,底面ABCD为边长为5的正方形,AE平面CDE,AE=3.

(1)若的中点,求证:平面
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,侧面与底面垂直, 分别是的中点,,,.

(Ⅰ)求证:平面;
(Ⅱ)若点为线段的中点,求异面直线所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.

(1)证明:AC⊥B1D;
(2)求直线B1C1与平面ACD1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面为菱形,的中点.

(1)若,求证:平面平面
(2)点在线段上,,试确定的值,使平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,面,底面是直角梯形,侧面是等腰直角三角形.且

(1)判断的位置关系;
(2)求三棱锥的体积;
(3)若点是线段上一点,当//平面时,求的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是三个互不重合的平面,是两条不重合的直线,则下列命题中正确的是(   )
A.若,则
B.若,则
C.若,则
D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在下列条件下,可判断平面与平面平行的是(     )
A.α、β都垂直于平面γ
B.α内不共线的三个点到β的距离相等
C.l,m是α内两条直线且l∥β,m∥β
D.l,m是异面直线,且l∥α,m∥α,l∥β,m∥β

查看答案和解析>>

同步练习册答案