精英家教网 > 高中数学 > 题目详情
如图,在四棱锥中,底面为直角梯形,垂直于底面分别为的中点.

(1)求证:
(2)求点到平面的距离.
(1)证明见解析;(2)

试题分析:(1)要证两直线垂直,一般是证一条直线与过另一条直线的某个平面垂直,例如能否证明垂直于过的平面,下面就是要在平面内找两条与垂直的直线,从题寻找垂直,是等腰的底边上的中线,与是垂直的,另一条是直线垂直于平面,当然也垂直于直线,得证;(2)求点到平面距离,关键是过点作出平面的垂线,这一点在本题中还是委容易的,因为平面平面,故只要在平面内过的垂线,这条垂线也我们要求作的平面的垂线,另外体积法在本题中也可采用.
试题解析:(1)因为N是PB的中点,PA=AB,
所以AN⊥PB,因为AD⊥面PAB,所以AD⊥PB,又因为AD∩AN=A
从而PB⊥平面ADMN,因为平面ADMN,
所以PB⊥DM.          7′
(2) 连接AC,过B作BH⊥AC,因为⊥底面
所以平面PAB⊥底面,所以BH是点B到平面PAC的距离.
在直角三角形ABC中,BH=          14′
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中,是棱上的一点,的延长线与的延长线的交点,且∥平面

(1)求证:
(2)求二面角的平面角的余弦值;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱柱中,已知平面平面,.

(1)求证:
(2)若为棱的中点,求证:平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥底面是平行四边形,面,,,分别为的中点.

(1)求证:
(2)求证:
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱柱的底面是平行四边形,且底面°,点中点,点中点.

(Ⅰ)求证:平面平面
(Ⅱ)设二面角的大小为,直线与平面所成的角为,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,在四面体A?BCD中,AD^平面BCD,BC^CD,AD=2,BD=2.M是AD的中点.

(1)证明:平面ABC平面ADC;
(2)若ÐBDC=60°,求二面角C?BM?D的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥E—ABCD中,底面ABCD为边长为5的正方形,AE平面CDE,AE=3.

(1)若的中点,求证:平面
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面为菱形,的中点.

(1)若,求证:平面平面
(2)点在线段上,,试确定的值,使平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

表示直线表示不同的平面,则下列命题中正确的是(    )
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

同步练习册答案