精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱中,

(Ⅰ)求证:平面
(Ⅱ)若的中点,求与平面所成的角.
(1)证明过程详见解析;(2)所成的角为

试题分析:本题主要考查空间线、面位置关系,线面所成的角等基础知识,同时考查空间想象能力和推理论证能力.第一问,先利用正方形得对角线互相垂直,再利用线面垂直得到线线垂直,再利用线面垂直的判定定理得到线面垂直平面;第二问,先由已知条件判断是正三角形,由第一问的结论可知,与平面所成的角,在直角中,得出,所以,即与平面所成的角为
试题解析:(Ⅰ) 由题意知四边形是正方形,故
平面,得
,所以平面,故
从而得平面.        7分
(Ⅱ)设相交于点,则点是线段的中点.
连接,由题意知是正三角形.
的中线知:的交点为重心,连接
由(Ⅰ)知平面,故在平面上的射影,于是与平面所成的角.
在直角中,, 
所以
,即与平面所成的角为.    15分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,平面为侧棱上一点,它的正(主)视图和侧(左)视图如图所示.

(1)证明:平面
(2)在的平分线上确定一点,使得平面,并求此时的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,是等边三角形,,将沿折叠到的位置,使得

(1)求证:
(2)若分别是,的中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,侧面与底面垂直, 分别是的中点,,,.

(Ⅰ)求证:平面;
(Ⅱ)若点为线段的中点,求异面直线所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是正方形,,点在棱上.

(1)求证:平面平面
(2)当,且时,确定点的位置,即求出的值.
(3)在(2)的条件下若F是PD的靠近P的一个三等分点,求二面角A-EF-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中,,点D是AB的中点,

求证:(1); (2)平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是异面直线,直线∥直线,那么(  )
A.一定是异面直线B.一定是相交直线
C.不可能是平行直线D.不可能是相交直线

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,直线平面,垂足为,直线是平面的一条斜线,斜足为,其中,过点的动直线交平面于点,则下列说法正确的是___________.

①若,则动点B的轨迹是一个圆;
②若,则动点B的轨迹是一条直线;
③若,则动点B的轨迹是抛物线;
,则动点B的轨迹是椭圆;
,则动点B的轨迹是双曲线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在底面为正方形的长方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是            (写出所有正确结论的编号)
①矩形;②不是矩形的平行四边形;③有三个面为直角三角形,有一个面为等腰三角形的四面体;④每个面都是等腰三角形的四面体;⑤每个面都是直角三角形的四面体.

查看答案和解析>>

同步练习册答案